
Implementing SIP
Telephony in Python

Implementer’s Guide to Scalable and
Robust Internet Telephony with
Session Initiation Protocol in Client-
Server and Peer-to-Peer modes in
Python

Kundan Singh

Author’s Remarks: This document is still “work in progress”. Please revisit this site later to see the
completed text. I plan to provide this as a free document accompanying my open-source software of
the 39 Peers project.

Copyright: All material in this document is © 2007-2008, Kundan Singh. See next page for details.

- 2 -

Copyright

All material in this document is © 2007-2008, Kundan Singh. You need explicit written permission
from Kundan Singh <mailto:kundan@39peers.net> to copy or reproduce (full or part of) the content of
this book.

Some text from IETF RFCs and Internet-Drafts are reproduced in this document to explain or assist in
their implementation in accordance with the copyright notice in those RFCs and Internet-Draft. The
copyright notice of those RFCs and Internet-Drafts is as follows:

Copyright (C) The Internet Society (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Part

 2 Essential SIP
In this part you will get a step-by-step implementation guide to various protocols such as SIP, SDP and RTP.
It covers essential protocol suites described in RFC3261, RFC4566, RFC3264, RFC2617 and other related
RFCs.

We will start with parsing and formatting of SIP addresses, then describe the parsing and formatting of SIP
messages and its components. Then we will build a SIP stack API with other control functions for
transaction, dialog, etc. Then we add digest authentication and other security mechanisms in our
implementation. At the end of this part, you will understand how to implement the basic SIP protocol suite
without worrying about client or server specific components such as media or proxy. A major part in SIP
telephony implementation deals with parsing, formatting and various state machines for transactions and
dialogs – which appear for both client as well as server implementations.

Addressing
Implementing URI as per RFC 2396 and SIP address

A number of aspects in SIP and related protocols use various forms of addresses. The URI or Uniform
Resource Identifier is one such class of address and is defined in RFC 2396. Some example URIs are shown
below:

sip:kundan@example.net
sip:kns10@192.168.10.20:5060;transport=tcp
http://www.39peers.net/book

Besides a URI, a SIP implementation also needs to deal with SIP addresses. A SIP address contains a user’s
display name as well as a URI as shown below. Naturally, a SIP address is a super-set of an URI as far as
data information is concerned:

“Kundan Singh” <sip:kundan@39peers.net>

Dealing with addresses requires three functions: parsing, formatting and accessing the fields. We create a
new module named rfc2396 to implement these functions.

URI

Let’s assume a URI class that represents a URI. We would want the objects of URI type to be able to
interoperate with strings such that it can be parsed from a string or formatted into a string. We would also
want to access the properties of the object such as scheme, user, password, host and port.

>>> u = URI('sip:kundan@example.net')
>>> print u.scheme
sip
>>> print u.host
example.net
>>> u.port = 5060
>>> print u
sip:kundan@example.net:5060

The object should expose the headers and parameters of the URI as well. Finally, we would want an equality
test operation so that two URIs can be compared. Note that a URI comparison uses case-insensitive values
for certain fields.

Let’s start by defining the URI class.

class URI(object):

IMPLEMENTING SIP TELEPHONY

- 5 -

To construct this object from a string, we need to parse the string. It is possible to build a regular expression
that captures most (but not all) forms of URI representations. In the simplest form the regular expression
should be able to extract the scheme, user, password, host, port, parameters and headers from the string.
Based on the allowed values for various parts, we can construct the regular expression as follows.

Import re
…
 _syntax = re.compile('̂ (?P<scheme>[a-zA-Z][a-zA-Z0-9\+\-\.]*):' # scheme
 + '(?:(?:(?P<user>[a-zA-Z0-9\-_\.\!\~*\'\(\)&=\+\$,;\?\/\%]+)' # user
 + '(?::(?P<password>[^:@;\?]+))?)@)?' # password
 + '(?:(?:(?P<host>[^;\?:]*)(?::(?P<port>[\d]+))?))' # host, port
 + '(?:;(?P<params>[^\?]*))?' # parameters
 + '(?:\?(?P<headers>.*))?$') # headers

Once a string is passed using this syntax, we can extract the various groups into appropriate properties such
as scheme, user, password, host, port, params and headers so that these properties are
available as object properties to the programmer.

 def __init__(self, value=''):
 m = URI._syntax.match(value)
 if not m: raise ValueError, 'Invalid URI(' + value + ')'
 self.scheme, self.user, self.password, self.host, self.port, params, headers = m.groups()

Now that the parsing is completed, we need to take care of the boundary cases. For example, if the string
represents a “tel:” URI then actual telephone number will be in the host property whereas semantically it
makes sense to put the phone number in the user property.

 if self.scheme == 'tel' and self.user is None:
 self.user, self.host = self.host, None

If the port number is empty or missing, then the port property should be set to None instead of an empty
string. If the port number is valid then the port property should be a number instead of a string representing
the number.

 self.port = self.port and int(self.port) or None

Instead of storing the parameters and headers as single string variables named param and header, it is
more convenient to create associative array for the param indexed by parameter name, and an array for
header with list of header values. This allows us to access the parameters as u.param[‘transport’]
to access the “transport” parameter, and headers as header[3] to access the fourth header in the zero-
bound array index.

Extracting headers string into an array is easy by splitting across “&” to get individual headers of the array.

 self.header = [nv for nv in headers.split('&')] if headers else []

- 6 -

To extract the parameters string into an associative array or dict, we need to first split across “;” then for
each such string take the left side of “=” as parameter name and right side as parameter value. Note that to
allow “=” in the parameter value, we cannot use split on individual strings; instead we use partition.
Once we have split values, we can construct the dict using array of (name, value) tuples.

 splits = map(lambda n: n.partition('='), params.split(';')) if params else []
 self.param = dict(map(lambda k: (k[0], k[2] if k[2] else None), splts)) if splits else {}

Once we are done we the parsing of the string into individual properties of this object,we construct the full
constructor function by doing error checking – for the case when the value supplied is empty to construct an
empty URI object.

 def __init__(self, value=''):
 if value:
 … # parsing code
 else:
 self.scheme = self.user = self.password = self.host = self.port = None
 self.param = {}; self.header = []

To format the URI object as a string, we just create a string placing the individual properties appropriately.
We implement the __repr__ instead of __str__ so that the implementation will be available to hash
indexing as well. The tricky part is to construct the parameters string from the param property and the
headers string from the header property. Luckily the language feature facilitates such conversion easily as
shown below.

 def __repr__(self):
 user,host = (self.user,self.host) if self.scheme != 'tel' else (None, self.user)
 return (self.scheme + ':' + ((user + \
 ((':'+self.password) if self.password else '') + '@') if user else '') + \
 (((host if host else '') + ((':'+str(self.port)) if self.port else '')) if host else '') + \
 ((';'+';'.join([(n+'='+v if v is not None else n) for n,v in self.param.items()])) if len(self.param)>0 else '') + \
 (('?'+'&'.join(self.header)) if len(self.header)>0 else '')) if self.scheme and host else '';

We follow a convention to implement the dup function for simple data objects, similar to clone function in
java, which allows duplicating an object instance. Instead of deep copying individual properties, it is easier to
just convert the object to string and back to the object for duplication.

 def dup(self):
 return URI(self.__repr__())

Comparing two URI objects require us to implement two functions: __hash__ and __cmp__. This gives
complete order to the URI objects and hence these objects can be used as index in a table. To return the hash
code for the object, we can convert it to lower-case string and return the hash of that string. Similarly, to
compare the two URI objects, we can convert them to lower-case strings and compare them. Although, only
certain fields in a URI specification are case in-sensitive, in our basic implementation we assume all fields
are case insensitive. TODO: this may lead to some interoperability problem.

IMPLEMENTING SIP TELEPHONY

- 7 -

 def __hash__(self):
 return hash(str(self).lower())
 def __cmp__(self, other):
 return cmp(str(self).lower(), str(other).lower())

As a convenient method, we can provide a read-only property to extract the (host, port) tuple from the
URI. This method allows us to keep host-port as a separate data type without having to look inside the tuple.
For example, u.hostPort allows access to the tuple via the hostPort property.

 @property
 def hostPort(self):
 return (self.host, self.port)

Finally, the last property of interest is the secure property. Several URI schemes such as “sips”, “https”
refer to the secure version of the URI scheme. Having this property allows the application to set or inspect the
security level without having to know the various schemes that apply to secure URI. The following
implementation as a limitation that it works only for “sips” and “https”, but can be easily extended to support
other protocols. Unlike other read-write properties, the secure property is unique in that once set to True
it can not be reset to False. Because of this uniqueness it is desirable to have a separate processing in this
property instead of just storing the property as a flag.

 def _ssecure(self, value):
 if value and self.scheme in ['sip', 'http']: self.scheme += 's'
 def _gsecure(self):
 return True if self.scheme in ['sips', 'https'] else False
 secure = property(fget=_gsecure, fset=_ssecure)

Now that we have implemented the URI class we can do some basic testing.

 >>> print URI('sip:kundan@example.net')
 sip:kundan@example.net
 >>> print URI('sip:kundan:passwd@example.net:5060;transport=udp;lr?name=value&another=another')
 sip:kundan:passwd@example.net:5060;lr;transport=udp?name=value&another=another
 >>> print URI('sip:192.1.2.3:5060')
 sip:192.1.2.3:5060
 >>> print URI("sip:kundan@example.net") == URI("sip:Kundan@Example.NET")
 True
 >>> print 'empty=', URI()
 empty=
 >>> print URI('tel:+1-212-9397063')
 tel:+1-212-9397063
 >>> print URI('sip:kundan@192.1.2.3:5060').hostPort
 ('192.1.2.3', 5060)

- 8 -

Address

As mentioned before a SIP address contains a display-name and a URI. Please refer to RFC 3261 for details
on the specification. It is used in various places in a SIP message, e.g., To, From, Contact headers.

We implement the SIP address using the Address class. What makes the implementation challenging is the
presence of zero of more white spaces within the SIP address, optional quotes around the display name, and
optional display-name property. Note that the parser should understand the following forms:

 Kundan Singh <sip:kundan@example.net> or <sip:kundan@example.net>
 "Kundan Singh" <sip:kundan@example.net>
 sip:kundan@example.net

Likewise, there are three regular expressions to parse the address as shown below. Parsing routine can match
against any of these to identify the string as a valid SIP address. The first one has no quotes around display
name, the second one has quotes around display name and the third one has empty display name.

class Address(object):
 syntax = [re.compile('̂ (?P<name>[a-zA-Z0-9\-\.\+\~\ \t]*)<(?P<uri>[^>]+)>'),
 re.compile('̂ (?:"(?P<name>[a-zA-Z0-9\-\._\+\~\ \t]+)")[\ \t]*<(?P<uri>[^>]+)>'),
 re.compile('̂ [\ \t]*(?P<name>)(?P<uri>[^;]+)')]

Let’s define a method called parse to parse an address from string. This method matches the value against
each of the above regular expressions, and if a match is found, then it extracts the display-name and URI after
stripping the white-spaces.

 def parse(self, value):
 for s in Address._syntax:
 m = s.match(value)
 if m:
 self.displayName = m.groups()[0].strip()
 self.uri = URI(m.groups()[1].strip())
 return

The above method needs to be modified to accommodate certain conditions. For example, SIP defines a
special SIP address of value “*” which can be present only in the Contact header. Secondly, a SIP
message parsing routing will need to know the parts after the SIP address in various headers, e.g., the header
parameters of To after parsing of the SIP address of To header. Thus, we return the number of characters
parsed in this routine, so that the caller can continue beyond the SIP address.

 def parse(self, value):
 if str(value).startswith('*'):
 self.wildcard = True
 return 1;
 else:
 for s in Address._syntax:
 m = s.match(value)
 if m:
 self.displayName = m.groups()[0].strip()

IMPLEMENTING SIP TELEPHONY

- 9 -

 self.uri = URI(m.groups()[1].strip())
 return m.end()

Once we have the regular expression to parse, the constructor becomes straightforward.

 def __init__(self, value=None):
 self.displayName = self.uri = None
 self.wildcard = self.mustQuote = False
 if value: self.parse(value)

Note the two special properties: wildcard and mustQuote. The wildcard property is used to indicate
that the address represented by this object is a special “*” address, and the mustQuote property controls
whether the string representation must have quoted URI even if the display name is absent.

Constructing the string representation is straightforward, as it puts the display-name and URI appropriately in
the resulting string. The URI itself is represented to a string using it’s __repr__ method.

 def __repr__(self):
 return (('"' + self.displayName + '"' + (' ' if self.uri else '')) if self.displayName else '') \
 + ((('<' if self.mustQuote or self.displayName else '') \
 + repr(self.uri) \
 + ('>' if self.mustQuote or self.displayName else '')) if self.uri else '')

Similar to the URI class, the Address class also has the dup method to clone the object.

 def dup(self):
 return Address(self.__repr__())

In a real-implementation of a client, sometimes it is necessary to extract the display part of the address. The
specification says that the display name is optional. In such cases, the implementation uses the user part of
the URI as the display text. Nevertheless, it is handy to provide a read-only displayable property that
extracts the displayable user name from the address using some built-in criteria. The following property
definition uses the first 25 characters of the display-name, user part or host part, whichever is present first in
that order.

 @property
 def displayable(self):
 name = self.displayName or self.uri and self.uri.user or self.uri and self.uri.host or ''
 return name if len(name)<25 else (name[0:22] + '...')

Now that we are done with the basic implementation of the Address class, we can perform some simple
tests.

 >>> a1 = Address('"Kundan Singh" <sip:kundan@example.net>')
 >>> a2 = Address('Kundan Singh <sip:kundan@example.net>')
 >>> a3 = Address('"Kundan Singh" <sip:kundan@example.net> ')

- 10 -

 >>> a4 = Address('<sip:kundan@example.net>')
 >>> a5 = Address('sip:kundan@example.net')
 >>> print str(a1) == str(a2) and str(a1) == str(a3) and str(a1.uri) == str(a4.uri) and str(a1.uri) == str(a5.uri)
 True
 >>> print a1
 "Kundan Singh" <sip:kundan@example.net>
 >>> print a1.displayable
 Kundan Singh

isIPv4

Sometimes the processing depends on the type of address, whether the address is an IPv4 or IPv6 address. A
function such as the following provides a ready-to-use utility for such checks. A simple technique is to
invoke the inet_aton function on the data to know if the data is valid IPv4 or not. Instead of doing a
socket call one could alternatively parse the data into individual numeric values and check the values.

import socket
def isIPv4(data):
 try:
 m = socket.inet_aton(data) # alternatively: len(filter(lambda y: int(y) >= 0 and int(y) < 256, data.split('.', 3))) == 4
 return True
 except:
 return False

To test the function you can invoke the following:

 >>> isIPv4('10.2.3.4') == True
 True
 >>> False == isIPv4('10.2.3.a') == isIPv4('10.2.3.a.5') == isIPv4('10.2.3.-2') == isIPv4('10.2.3.403')
 True

isMulticast

A similar test can be done for multicast addresses as follows. A multicast address, for our implementation, is
an IPv4 address for which the first four most significant bits are 0111.

import socket, struct
def isMulticast(data):
 try:
 m, = struct.unpack('>I', socket.inet_aton(data))
 return ((m & 0xF0000000) == 0xE0000000) # class D: 224.0.0.0/4 or first four bits as 0111
 except:
 return False

The test can be done as follows:

IMPLEMENTING SIP TELEPHONY

- 11 -

 >>> isMulticast('224.0.1.2') == True
 True
 >>> False == isMulticast('10.2.3.4')
 True

Now that we have looked at various aspects of parsing and formatting SIP addresses and URIs, we can move
on to the actual SIP message parsing and formatting and eventually implementation of a complete SIP stack
in the next chapter.

Session Initiation Protocol (SIP)
Implementing core SIP as per RFC 3261

We have already seen how to implement the addressing module. This chapter describes the implementation
of the SIP module named rfc3261. We continue with the parsing and formatting methods from the
addressing module to the SIP message structure. After describing the parsing and formatting, we move on to
building a SIP stack.

SIP message

An example SIP message is shown below.

INVITE sip:bob@example.net SIP/2.0
Via: SIP/2.0/UDP pc33.home.com;branch=z9hG4bKnashds8
Max-Forwards: 70
To: Bob <sip:bob@example.net>
From: Alice <sip:alice@home.com>;tag=1928301774
Call-ID: a84b4c728ca8@mypc.home.com
CSeq: 613 INVITE
Contact: <sip:alice@pc33.home.com>
Content-Type: application/sdp
Content-Length: 148

v=0
o=user1 53655765 2353687637 IN IP4 192.1.2.3
s=Weekly conference call
c=IN IP4 192.1.2.3
t=0 0
m=audio 8080 RTP/AVP 0 8
m=video 8082 RTP/AVP 31

The first line is a request or response line, which is followed by header lines, and finally the message body.
You can identify the SIP addresses and URIs in various parts of this message such as request-URI on the
firt line and the values of To, From and Contact headers.

To encapsulate a SIP message we define a class Message. To encapsulate individual header we define a
class Header. We take the bottom-up approach of first parsing and formatting a Header and then defining
various methods in a Message.

As with addresses, we would want dynamic attributes in Message object to represent the various headers.
Similar the Header can have dynamic attributes for the parameters. Some desired operations are shown
below.

>>> m = Message(“INVITE sip:kundan@example.net SIP/2.0\r\n”);
>>> m.To = Header(‘”Kundan Singh” <sip:kundan@example.net>’, “To”);
>>> print m.To.value.uri.host
example.net

IMPLEMENTING SIP TELEPHONY

- 13 -

>>> m.method = “MESSAGE”
>>> print m
MESSAGE sip:kundan@example.net SIP/2.0
To: “Kundan Singh” <sip:kundan@example.net>

Header

From the structure point of view, there are four types of SIP headers: standard, address-based, comma-
included and unstructured. Most SIP headers are defined to be standard headers that have a value and zero or
more parameters separated by a semi-colon. The address-based headers have the value consisting of a SIP
address, but the parameters are similar to the standard headers. The difference arises because the value of an
address-based header can internally have “;” whereas those are forbidden in the value of the standard header.
For example, URI parameters are also separated by “;” within the value of an address-based header. A
comma-included header is the one that can have a “,” in the value of the header. Normally a standard or
address-based header can have multiple header values in the same header line, where the values are separated
by comma “,”. However, for a comma-included header such as WWW-Authenticate, there can be only
one value per header line, and the intermediate comma “,” are part of the value. The comma-included headers
are only used because of interoperability with existing HTTP headers for authentication, which are comma-
included. The unstructured headers have one value per header line and the value is treated as opaque string
without any structure internally. An example is Call-ID header.

The specification defines parsing rules for various headers, which allow us to classify them among these
categories as follows. Any header name that is not covered in the following three categories is assumed to be
a standard header.

_address = ['contact', 'from', 'record-route', 'refer-to', 'referred-by', 'route', 'to']
_comma = ['authorization', 'proxy-authenticate', 'proxy-authorization', 'www-authenticate']
_unstructured = ['call-id', 'cseq', 'date', 'expires', 'max-forwards', 'organization', 'server', 'subject', 'timestamp', 'user-agent']

An extension to SIP can define new header names in these categories. By default we assume standard header
if not found in the list above.

From RFC3261 p.32 – SIP provides a mechanism to represent common header field names in an abbreviated
form. A compact form MAY be substituted for the longer form of a header field name at any time without
changing the semantics of the message. A header field name MAY appear in both long and short forms within
the same message. Implementations MUST accept both the long and short forms of each header name.

Besides these categories needed for our implementation, the specification also defines the short-form of
header names as follows.

_short = ['allow-events', 'u', 'call-id', 'i', 'contact', 'm', 'content-encoding', 'e', 'content-length', 'l', 'content-type', 'c', 'event',
'o', 'from', 'f', 'subject', 's', 'supported', 'k', 'to', 't', 'via', 'v']

- 14 -

Canonicalize

In the above listing, we have used the lower-case header names so that comparison can be done consistently.
For the purpose of canonical representation and formatting of headers, as well as comparison of two header
names, the standard defines canonical representation of various header names. In particular, the header names
in canonical form have one or more words joined together by a dash ‘-‘ with the first letter of each word
capitalized. The following statement can convert a lower-case header name to its canonical form.

'-'.join([x.capitalize() for x in s.split('-')])

There are three exceptions to this rule as shown below.

_exception = {'call-id':'Call-ID','cseq':'CSeq','www-authenticate':'WWW-Authenticate'}

To facilitate canonicalization of header names, we define a function that first converts the name to lower case
and then canonicalizes it keeping the exceptions and short-forms in mind.

def _canon(s):
 s = s.lower()
 return ((len(s)==1) and s in _short and _canon(_short[_short.index(s)-1])) \
 or (s in _exception and _exception[s]) or '-'.join([x.capitalize() for x in s.split('-')])

The method can be tested to produce canonical representations of various header names, existing or future.

 >>> print _canon('call-Id')
 Call-ID
 >>> print _canon('fRoM')
 From
 >>> print _canon('refer-to')
 Refer-To

Quote and unquote

Another utility functionality we need is to quote and unquote a string. The parameter values in a header can
be quoted, whereas we store unquoted value in our object. The following functions allow us to quote or
unquote a string as applicable.

_quote = lambda s: '"' + s + '"' if s[0] != '"' != s[-1] else s
_unquote = lambda s: s[1:-1] if s[0] == '"' == s[-1] else s

Parsing

A SIP header contains a header name and a header value. There can be any number of header attributes. The
attribute name need not be known in advance. We define our class such that name and value properties

IMPLEMENTING SIP TELEPHONY

- 15 -

refer to the header name and value, whereas the header object itself can be used as an associative array to
extract the attribute value indexed by the attribute name, e.g., h[“tag”] or h.tag.

To parse a header value, we define a method that takes the header name and based on the type it invokes
different parsing logic.

class Header(object):
 def _parse(self, value, name):
 if name in _address:
 … # parse as address-based header
 elif name not in _comma and name not in _unstructured:
 … # parse as standard header
 if name in _comma:
 … # parse as comma-included header
 return value

For an address-based header, the returned value is an object of type Address which stores the address
part of the value. The rest of the string is parsed for sequence of header parameters separated by semi-colon
“;”, and stored as attributes of the local Header object. The Address is set to always use quotes for the
URI while formatting. This is important to prevent missing quotes which causes the URI parameters to be
treated as header parameters after formatting. Note that the parameter name is considered to be case in-
sensitive.

 if name in _address: # address header
 addr = Address(); addr.mustQuote = True
 count = addr.parse(value)
 value, rest = addr, value[count:]
 if rest:
 for n,sep,v in map(lambda x: x.partition('='), rest.split(';') if rest else []):
 if n.strip():
 self.__dict__[n.lower().strip()] = v.strip()

For a standard header, the returned value is the string up to the semi-colon “;” if any, otherwise the whole
value string. If the parameters are present indicated by the semi-colon “;” then they are parsed into this
Header object as before. TODO: we need to check if the parameter name and/or value are tokens.

 elif name not in _comma and name not in _unstructured: # standard
 value, sep, rest = value.partition(';')
 for n,sep,v in map(lambda x: x.partition('='), rest.split(';') if rest else []):
 self.__dict__[n.lower().strip()] = v.strip()

A comma included header is usually of the form “value param1=value1, param2=value2,…”
For programming convenience, we return the value part as the value of the header and store the individual
param-value pairs in the local Header object as an associative array.

 if name in _comma:
 self.authMethod, sep, rest = value.strip().partition(' ')
 for n,v in map(lambda x: x.strip().split('='), rest.split(',') if rest else []):

- 16 -

 self.__dict__[n.lower().strip()] = _unquote(v.strip())

After the parsing is completed, we may want to inspect some of the unstructured header values and store the
values in a more structured form. For instance, the CSeq header value has two parts: the number and the
method name.

CSeq: 1 INVITE

For programming convenience, we can store the individual parts separately as follows. We also canonicalizes
the value so as to remove more than one spaces between the number and the method name, if needed.

 elif name == 'cseq':
 n, sep, self.method = map(lambda x: x.strip(), value.partition(' '))
 self.number = int(n); value = n + ' ' + self.method

Now that we have completed the parsing step, we can create the constructor which takes an optional string
for the value. The constructor removes any extra surrounding white-spaces from the value before parsing it.
The header name is converted to lower-case if applicable.

 def __init__(self, value=None, name=None):
 self.name = name and _canon(name.strip()) or None
 self.value = self._parse(value.strip(), self.name and self.name.lower() or None)

Formatting

Formatting a Header object has two semantics: either you can format only the value or the complete header
line. We implement two different methods, str and repr, to achieve these functions. Correspondingly, the
object can be converted to string in different contexts differently.

The value is formatted as follows. If the header type is comma-included or unstructured, then the value
property is the actual value string representation which can be returned, otherwise the parameters (or rest)
needs to be appended to the value. When appending the parameters, all indices from the local associative
array are used except for pre-defined indices of name, value and _viauri.

 def __str__(self):
 name = self.name.lower()
 rest = '' if ((name in _comma) or (name in _unstructured)) \
 else (';'.join(map(lambda x: self.__dict__[x] and '%s=%s'%(x.lower(),self.__dict__[x]) or x, filter(lambda x:
x.lower() not in ['name','value', '_viauri'], self.__dict__))))
 return str(self.value) + (rest and (';'+rest) or '');

The repr method just returns the header “name: value” where value is formatted using the str method.

IMPLEMENTING SIP TELEPHONY

- 17 -

 def __repr__(self):
 return self.name + ": " + str(self)

Misc

Besides the parsing and formatting methods, there are other utility methods needed for a Header object. A
dup method is used to clone the object by formatting and parsing back into a new object.

 def dup(self):
 return Header(self.__str__(), self.name)

The parameter access can be done either by container syntax (such as h[“tag”]) of attribute access syntax
(h.tag). This gives more flexibility to the application developer. As noted earlier, we store the parameters in
the local __dict__ property which readily allows attribute access syntax. To add the container access
syntax we add the following methods.

 def __getitem__(self, name): return self.__dict__.get(name.lower(), None)
 def __setitem__(self, name, value): self.__dict__[name.lower()] = value
 def __contains__(self, name): return name.lower() in self.__dict__

Via URI

The Via header is unique, in the sense that even though it is a standard header there is lot of structure inside
the value part of the header.

Via: SIP/2.0/UDP pc33.home.com;branch=z9hG4bKnashds8

The viaUri property represents a URI object derived from the Via Header object such that the URI
represents the address to which we need to send a response. RFC3261 specifies the process to derive such a
URI. First we separate the header value “SIP/2.0/UDP pc33.home.com” into the first and second parts. The
first part gives us the type: udp, tcp or tls.

 proto, addr = self.value.split(' ')
 type = proto.split('/')[2].lower() # udp, tcp, tls

The second part can be used to construct a new URI object with no “user” part, a default “transport”
parameter derived from the type and the “scheme” of “sip:” The URI gets stored internally.

 self._viaUri = URI('sip:' + addr + ';transport=' + type)

A default port number of 5060 is assumed if missing in the URI.

- 18 -

 if self._viaUri.port == None: self._viaUri.port = 5060

If the rport parameter is present in the header, the URI port is changed to the rport value if present, and
not changed if rport value is not present.

 if 'rport' in self:
 try: self._viaUri.port = int(self.rport)
 except: pass # probably not an int

If the type is not a reliable transport type, and maddr parameter is present then the URI host is changed to
maddr value, otherwise if received parameter is present then URI host is changed to received parameter
value.

 if type not in ['tcp','sctp','tls']:
 if 'maddr' in self: self._viaUri.host = self.maddr
 elif 'received' in self: self._viaUri.host = self.received

We implement this function using the viaUri property as follows.

 @property
 def viaUri(self):
 if not hasattr(self, '_viaUri'):
 if self.name != 'Via': raise ValueError, 'viaUri available only on Via header'
 proto, addr = self.value.split(' ')
 type = proto.split('/')[2].lower() # udp, tcp, tls
 self._viaUri = URI('sip:' + addr + ';transport=' + type)
 if self._viaUri.port == None: self._viaUri.port = 5060
 if 'rport' in self:
 try: self._viaUri.port = int(self.rport)
 except: pass # probably not an int
 if type not in ['tcp','sctp','tls']:
 if 'maddr' in self: self._viaUri.host = self.maddr
 elif 'received' in self: self._viaUri.host = self.received
 return self._viaUri

Before continuing it may be worthwhile to test our function for correctness.

 >>> print Header('SIP/2.0/UDP example.net:5090;ttl=1', 'Via').viaUri
 sip:example.net:5090;transport=udp
 >>> print Header('SIP/2.0/UDP 192.1.2.3;rport=1078;received=76.17.12.18;branch=0', 'Via').viaUri
 sip:76.17.12.18:1078;transport=udp
 >>> print Header('SIP/2.0/UDP 192.1.2.3;maddr=224.0.1.75', 'Via').viaUri
 sip:224.0.1.75:5060;transport=udp

IMPLEMENTING SIP TELEPHONY

- 19 -

Splitting header line

From RFC3261 p29 – HTTP/1.1 also specifies that multiple header fields of the same field name whose value is
a comma-separated list can be combined into one header field. That applies to SIP as well, but the specific rule
is different because of the different grammars. Specifically, any SIP header whose grammar is of the form

header = "header-name" HCOLON header-value *(COMMA header-value)

allows for combining header fields of the same name into a comma- separated list.

Each header field consists of a field name followed by a colon (":") and the field value. The formal grammar for a
message-header allows for an arbitrary amount of whitespace on either side of the colon.

The SIP message parser need to first divide the headers portion into individual header lines, extract the
header name and value from the header line and finally invoke the Header constructor to construct
individual header object. If a single header line contains multiple comma “,” separated header values, then
those individual header values need to be constructed independently.

We define a class method to perform this task. The method takes a string and returns a tuple with two values:
the first is the header name, and the second is an array of Header objects.

 @staticmethod
 def createHeaders(value):
 name, value = map(str.strip, value.split(':', 1))
 return (_canon(name), map(lambda x: Header(x, name), value.split(',') if name.lower() not in _comma else [value]))

This can be tested as follows.

 >>> print Header.createHeaders('Event: presence, reg')
 ('Event', [Event: presence, Event: reg])

Now that we have implemented the class, we can do basic testing as follows:

 >>> print repr(Header('"Kundan Singh" <sip:kundan@example.net>', 'To'))
 To: "Kundan Singh" <sip:kundan@example.net>
 >>> print repr(Header('"Kundan"<sip:kundan99@example.net>', 'To'))
 To: "Kundan" <sip:kundan99@example.net>
 >>> print repr(Header('Sanjay <sip:sanjayc77@example.net>', 'fRoM'))
 From: "Sanjay" <sip:sanjayc77@example.net>
 >>> print repr(Header('application/sdp', 'conTenT-tyPe'))
 Content-Type: application/sdp
 >>> print repr(Header('presence; param=value;param2=another', 'Event'))
 Event: presence;param=value;param2=another
 >>> print repr(Header('78 INVITE', 'CSeq'))
 CSeq: 78 INVITE

- 20 -

Message

A Message object is a representation of a SIP message. Unlike other SIP stacks that define various
individual message types, separate classes for first line, etc., in Python we use dynamic properties to easily
implement those features. In particular, the same class implements both the request and response. The
attributes such as method or response.are valid for request or response, respectively.

Even though we would like to have the attribute syntax for accessing the header from a message, certain
header names cannot be a Python attribute name. For example, “Content-Length” with an embedded dash
cannot be an attribute. Thus, we implement both the attribute as well as container access for the headers in a
message. The header names are case in-sensitive. Accessing the header that doesn’t exist in the message
gives None instead of exception. This creates cleaner source code, instead of having to catch exceptions
everywhere. The following definition allows us to create a generic object that can hold name value pairs and
allow access using both attribute access and container access syntax.

class Message(object):
 def __getattr__(self, name): return self.__getitem__(name)
 def __getattribute__(self, name): return object.__getattribute__(self, name.lower())
 def __setattr__(self, name, value): object.__setattr__(self, name.lower(), value)
 def __delattr__(self, name): object.__delattr__(self, name.lower())
 def __hasattr__(self, name): object.__hasattr__(self, name.lower())
 def __getitem__(self, name): return self.__dict__.get(name.lower(), None)
 def __setitem__(self, name, value): self.__dict__[name.lower()] = value
 def __contains__(self, name): return name.lower() in self.__dict__

There are certain pre-defined attributes: method, uri, response, responsetext, protocol and
body.

 _keywords = ['method','uri','response','responsetext','protocol','_body','body']

A SIP header can be either a single-instance header or a multiple-instance header. There are only a few
single-instance headers. By default, a header is treated as multiple-instance. The difference between single
and multiple instance headers is that we can expose a single Header as the value of a single instance header,
whereas we expose an list of Header objects as the value of a multiple instance header.

 _single = ['call-id', 'content-disposition', 'content-length', 'content-type', 'cseq', 'date', 'expires', 'event', 'max-forwards',
'organization', 'refer-to', 'referred-by', 'server', 'session-expires', 'subject', 'timestamp', 'to', 'user-agent']

Parsing

From RFC3261 p.27 – The start-line, each message-header line, and the empty line MUST be terminated by a
carriage-return line-feed sequence (CRLF). Note that the empty line MUST be present even if the message-
body is not.

Parsing a SIP message is an important method in the Message class. The first step in parsing a SIP message is
splitting the string across “\r\n\r\n” so that the second part becomes the message body text, and the first part
contains the first line as well as the headers.

IMPLEMENTING SIP TELEPHONY

- 21 -

 def _parse(self, value):
 firstheaders, body = value.split('\r\n\r\n', 1)

From RFC3261 p.28 – SIP requests are distinguished by having a Request-Line for a start-line. A Request-Line
contains a method name, a Request-URI, and the protocol version separated by a single space (SP) character.

 Request-Line = Method SP Request-URI SP SIP-Version CRLF

SIP responses are distinguished from requests by having a Status-Line as their start-line. A Status-Line consists
of the protocol version followed by a numeric Status-Code and its associated textual phrase, with each element
separated by a single SP character.

 Status-Line = SIP-Version SP Status-Code SP Reason-Phrase CRLF

After splitting the message string into two parts, the first part is further split into the first line and the headers
text.

 firstline, headers = firstheaders.split('\r\n', 1)

The first line can be either a request line or a response line. This can be identified by splitting the first line
into three parts across a white-space character and checking if the second partition is an integer or not? If it is
an integer (i.e., a response code), then the first line is a response line, otherwise it is a request line. The
properties response (of type int), responsetext and protocol are set for a response line and the
properties method, uri (or type URI) and protocol are set for a request line.

 a, b, c = firstline.split(' ', 2)
 try: # try as response
 self.response, self.responsetext, self.protocol = int(b), c, a # throws error if b is not int.
 except: # probably a request
 self.method, self.uri, self.protocol = a, URI(b), c

SIP header fields are similar to HTTP header fields in both syntax and semantics. In particular, SIP header fields
follow the HTTP definitions of syntax for the message-header and the rules for extending header fields over
multiple lines. However, the latter is specified in HTTP with implicit whitespace and folding. This specification
conforms to RFC 2234 and uses only explicit whitespace and folding as an integral part of the grammar.

After the first line is parsed, the headers text is split into individual header lines. Note that a header line that
starts with a white-space character is a continuation of the previous header line. Let’s not worry about the
continuation line for now.

 for h in headers.split('\r\n'):
 if h.startswith(r'[\t]'):
 pass
 … # parse the header line

To parse the header line we use the createHeaders class method in the Header class, which returns a
tuple with two elements: the header name and the array of Header objects indicating individual header
values. The header values are stored in the local object indexed by the header name, with value as either a
single Header object or a list of Header objects. Any error while parsing the header line is ignored and we
continue to the next header line.

- 22 -

 try:
 name, values = Header.createHeaders(h)
 if name not in self: # doesn't already exist
 self[name] = values if len(values) > 1 else values[0]
 elif name not in Message._single: # valid multiple-instance header
 if not isinstance(self[name],list): self[name] = [self[name]]
 self[name] += values
 except:
 continue

From RFC3261 p.33 – Requests, including new requests defined in extensions to this specification, MAY contain
message bodies unless otherwise noted. The interpretation of the body depends on the request method.

For response messages, the request method and the response status code determine the type and interpretation
of any message body. All responses MAY include a body.

The body length in bytes is provided by the Content-Length header field.

Once we have parsed the headers text into individual header elements, we extract the message body. SIP
defines a Content-Length of 0 if that header is missing. Once the body is stored in the body property,
we validate the body length and throw an exception if there is a mismatch.

 bodyLen = int(self['Content-Length'].value) if 'Content-Length' in self else 0
 if body: self.body = body
 if self.body != None and bodyLen != len(body):
 raise ValueError, 'Invalid content-length %d!=%d'%(bodyLen, len(body))

As the last step in the parsing process, we check if the mandatory headers are present or not.

 for h in ['To','From','CSeq','Call-ID']:
 if h not in self: raise ValueError, 'Mandatory header %s missing'%(h)

There are a number of boundary conditions that we need to implement, but haven’t implemented so far.
Examples are (1) if the message doesn’t contain “\r\n\r\n” sequence than the message body should be
assumed to be empty, (2) should parse as a valid message even if there are no headers, because the
application can add headers later, (3) should throw an error if the first line has less than three parts, (4) should
validate the syntax of the protocol property, (5) the first header should not start with a white-space, (6) the
method and response properties should be validated, (7) the syntax of top-most Via header and fields
such as ttl, maddr, received and branch should be validated.

Once we have implemented the parsing method, we can build the constructor that takes the optional message
string to parse.

 def __init__(self, value=None):
 self.method = self.uri = self.response = self.responsetext = self.protocol = self._body = None
 if value: self._parse(value)

IMPLEMENTING SIP TELEPHONY

- 23 -

Formatting

The formatting of the SIP message is simpler than parsing. The idea is to construct the first line followed by
individual header lines and finally append the message body. The Message object allows iteration over the
associative array index, where the iteration walks over all the Header objects.

 def __repr__(self):
 if self.method != None: m = self.method + ' ' + str(self.uri) + ' ' + self.protocol + '\r\n'
 elif self.response != None: m = self.protocol + ' ' + str(self.response) + ' ' + self.responsetext + '\r\n'
 else: return None # invalid message
 for h in self:
 m += repr(h) + '\r\n'
 m+= '\r\n'
 if self.body != None: m += self.body
 return m

Cloning

Cloning a message is similar to earlier data structures – format to string and parse the string back into another
Message object.

 def dup(self):
 return Message(self.__repr__())

Accessing headers

As mentioned earlier the attribute and container access can be used to refer to or add a particular header.
However, there are some additional convenient methods that we would want to implement to access the
headers. The iteration over the object should return each header in turn. This is implemented by flattening the
headers into a single list, and returning the iterator on that list.

 def __iter__(self):
 h = list()
 for n in filter(lambda x: not x.startswith('_') and x not in Message._keywords, self.__dict__):
 h += filter(lambda x: isinstance(x, Header), self[n] if isinstance(self[n],list) else [self[n]])
 return iter(h)

The method first returns the first occurrence of a particular Header object from the header name. If the
header doesn’t exist then it returns None. This method can be used when a header object is needed in a
singular context, irrespective of whether the header is a single or multiple instance header.

 def first(self, name):
 result = self[name]

- 24 -

 return isinstance(result,list) and result[0] or result

The method all returns a list of all the Header objects from the given header name. Event if the header type
is single-instance, it returns a list containing single element. This method is useful when accessing the header
object in a list context irrespective of whether the header is a single or multiple instance header. The method
is further extended to accept a list of header names and return all the Header objects associated with all
those names. Thus, h.all(“To”,”From”,”CSeq”,”Call-ID”) will return a list of all those
mandatory headers. If no such headers are found, then it returns an empty list, instead of None. Thus the
return value can always be evaluated in a list context.

 def all(self, *args):
 args = map(lambda x: x.lower(), args)
 h = list()
 for n in filter(lambda x: x in args and not x.startswith('_') and x not in Message._keywords, self.__dict__):
 h += filter(lambda x: isinstance(x, Header), self[n] if isinstance(self[n],list) else [self[n]])
 return h

The method insert can be used to insert a particular Header in a Message. The application doesn’t
have to worry about whether it is a single or multiple instance header and how many occurrences exist in the
message. An optional flag allows appending the header instead of inserting at the beginning. TODO: we
should not insert multiple instance header if the header name indicates a single instance header type.

 def insert(self, header, append=False):
 if header and header.name:
 if header.name not in self:
 self[header.name] = header
 elif isinstance(self[header.name], Header):
 self[header.name] = (append and [self[header.name], header] or [header, self[header.name]])
 else:
 if append: self[header.name].append(header)
 else: self[header.name].insert(0, header)

Accessing message body

We implement a read-write property named body, which refers to the message body. When the body is
explicitly set, we also update the Content-Length header value so that the message’s content length
remains consistent.

 def body():
 def fset(self, value):
 self._body = value
 self['Content-Length'] = Header('%d'%(value and len(value) or 0), 'Content-Length')
 def fget(self):
 return self._body
 return locals()
 body = property(**body())

IMPLEMENTING SIP TELEPHONY

- 25 -

Accessing response type

We implement various read-only properties, is1xx, is2xx, etc., to indicate whether a Message object
represents a response of that particular response class. Finally, a isfinal property indicates whether the
message is a final response or not. Python allows us to dynamically create methods and properties as follows.

 for x in range(1,7):
 exec 'def is%dxx(self): return self.response and (self.response / 100 == %d)'%(x,x)
 exec 'is%dxx = property(is%dxx)'%(x,x)
 @property
 def isfinal(self): return self.response and (self.response >= 200)

Creating a request or response

Instead of having the application create the Message object and populate the fields, it would be better to
define the factory methods to create different types of messages. We implement two class methods,
createRequest and createResponse, that can be used by the application to create a request or
response Message, respective, by supplying appropriate parameters. The use of these methods ensures that
the created object will be valid. For example, the uri property is actually a URI for a request, and the
protocol property actually stores “SIP/2.0”.

Before defining those methods, let’s define a populateMessage method that updates the Message
object with the supplied headers and message body content. If no message body is specified, then it
resets the Content-Length header value.

 @staticmethod
 def _populateMessage(m, headers=None, content=None):
 if headers:
 for h in headers: m.insert(h, True) # append the header instead of overriding
 if content: m.body = content
 else: m['Content-Length'] = Header('0', 'Content-Length')

Now to create a request, we create the Message object, and populate the method, uri, protocol
properties. Then the optional headers and message body are populated. Finally, the CSeq header, if present,
is updated with the correct method name. This allows us to create a new request from the headers of an
existing request, and let this method update the headers accordingly.

 @staticmethod
 def createRequest(method, uri, headers=None, content=None):
 m = Message()
 m.method, m.uri, m.protocol = method, URI(uri), 'SIP/2.0'
 Message._populateMessage(m, headers, content)
 if m.CSeq != None and m.CSeq.method != method: m.CSeq = Header(str(m.CSeq.number) + ' ' + method, 'CSeq')
 return m

- 26 -

A response can be created by supplying various properties. Optionally, the original request can be supplied as
well. If the original request is provided, then the response uses the To, From, CSeq, Call-ID and Via
headers from the original request. As per RFC3261, if the response code is 100, then the Timestamp
header is also copied from the original request. If optional headers are provided, then those are used to
override the previously assigned headers if needed.

The From field of the response MUST equal the From header field of the request. The Call-ID header field of the
response MUST equal the Call-ID header field of the request. The CSeq header field of the response MUST
equal the CSeq field of the request. The Via header field values in the response MUST equal the Via header
field values in the request and MUST maintain the same ordering.

If a request contained a To tag in the request, the To header field in the response MUST equal that of the
request. However, if the To header field in the request did not contain a tag, the URI in the To header field in the
response MUST equal the URI in the To header field.

 @staticmethod
 def createResponse(response, responsetext, headers=None, content=None, r=None):
 m = Message()
 m.response, m.responsetext, m.protocol = response, responsetext, 'SIP/2.0'
 if r:
 m.To, m.From, m.CSeq, m['Call-ID'], m.Via = r.To, r.From, r.CSeq, r['Call-ID'], r.Via
 if response == 100: m.Timestamp = r.Timestamp
 Message._populateMessage(m, headers, content)
 return m

At this point, we have seen how to parse and format a SIP message and how to define various data structures
for easy access of the properties in a message or its header. In the next section, we detail the implementation
of a SIP stack, including various layers as per the specification.

SIP stack

Although there is no good definition of a SIP stack, we use the following block diagram to decompose the
core SIP implementation components which we refer to as SIP stack. As shown in the diagram, a SIP stack
consists of these components: UserAgent/Dialog, Transaction, Message and Transport. The Transport,
Transaction and UserAgent/Dialog layers are defined in RFC3261.

From RFC3261 p.18 – SIP is structured as a layered protocol, which means that its behavior is described in
terms of a set of fairly independent processing stages with only a loose coupling between each stage.

Not every element specified by the protocol contains every layer. Furthermore, the elements specified by SIP are
logical elements, not physical ones. A physical realization can choose to act as different logical elements,
perhaps even on a transaction-by-transaction basis. The lowest layer of SIP is its syntax and encoding. Its
encoding is specified using an augmented Backus-Naur Form grammar (BNF).

The second layer is the transport layer. It defines how a client sends requests and receives responses and how
a server receives requests and sends responses over the network. All SIP elements contain a transport layer.

The Message layer defines the SIP message parsing and formatting as per the specification, and as we saw in
the previous section. Although the specification keeps the transport layer above the syntax and encoding
layer, we keep the implementation of the syntax and encoding layer (in the form of Message layer) above the
transport layer. This is needed for implementations which treat the transport as the socket layer of the
operating system with some methods to perform SIP related functions. This also helps us in moving the

IMPLEMENTING SIP TELEPHONY

- 27 -

transport layer to an external entity such that the SIP implementation becomes independent of the actual
transport layer.

The third layer is the transaction layer. Transactions are a fundamental component of SIP. A transaction is a
request sent by a client transaction (using the transport layer) to a server transaction, along with all responses to
that request sent from the server transaction back to the client. The transaction layer handles application-layer
retransmissions, matching of responses to requests, and application-layer timeouts. Any task that a user agent
client (UAC) accomplishes takes place using a series of transactions. User agents contain a transaction layer, as
do stateful proxies.

The layer above the transaction layer is called the transaction user (TU). Each of the SIP entities, except the
stateless proxy, is a transaction user. When a TU wishes to send a request, it creates a client transaction
instance and passes it the request along with the destination IP address, port, and transport to which to send the
request. A TU that creates a client transaction can also cancel it. When a client cancels a transaction, it requests
that the server stop further processing, revert to the state that existed before the transaction was initiated, and
generate a specific error response to that transaction.

Certain other requests are sent within a dialog. A dialog is a peer-to-peer SIP relationship between two user
agents that persists for some time. The dialog facilitates sequencing of messages and proper routing of requests
between the user agents.

A SIP client can be built on top of the UserAgent/Dialog layer whereas a SIP server can be built at various
layers depending on the features in the server – load-balancing server, transaction stateless proxy, transaction
stateful proxy, registrar, call stateful server.

The Stack layer represents the general processing module that needs to interact with all the other layers. We
describe the individual layers in detail below.

Message (parsing and formatting)

Transport (TCP/TLS/UDP, socket)

Transaction

UserAgent/Dialog

Client Server

Stack

Fig. block diagram of an example SIP stack

- 28 -

Stack and Transport

For the purpose of this implementation, we assume that the actual transport is outside our module,
rfc3261. This allows us to implement the core SIP functions without worrying about the network transport
layer. As a side-effect, we do not have to worry about the process model, whether it is event-based or thread-
pool, because the transport layer usually controls the messaging and architecture. This step is tricky and it is
important that you pay attention to the details here to understand the implementation.

The Stack later is the main interface for our SIP implementation. In a SIP implementation, typically we listen
on a transport address for incoming packet. When a packet is received, it is parsed and depending on the
message it gets delivered to either the transaction, user-agent or dialog layer. The Stack module receives a
message from the external transport and delivers it appropriately. The individual modules such as transaction,
user-agent and dialog can have their own timers. When these timers expire the module takes certain actions,
such as retransmitting a response or a request. We again use the Stack module to deliver messages to be sent
to the transport. When the application wants to send a request or a response, such as SIP registration or call
answer, it uses the Stack module to initiate the outbound request or response processing. Eventually, the
Stack layer delivers it back to the external transport layer for actual transport of the message. Thus, the Stack
layer is the sole interface in and out of our SIP implementation.

TransportInfo

The application may listen on multiple transport addresses, e.g., one for UDP, and one for TCP, or multiple
UDP ports. We simplify our design by assuming that each instance of the Stack object is associated with a
single instance of the listening transport. The Stack needs some information about the associated transport
for processing various SIP functions. This information can be encapsulated in an object and supplied to the
Stack on construction. An example of such information object is defined below.

class TransportInfo:
 def __init__(self, sock, secure=False):
 addr = getlocaladdr(sock)
 self.host, self.port = addr[0], addr[1]
 self.type = (sock.type==socket.SOCK_DGRAM and ‘udp’ or ‘tcp’)
 self.secure = secure
 self.reliable = self.congestionControlled = (sock.type==socket.SOCK_STREAM)

We assume that the external function getlocalsock returns the (ip, port) tuple for the locally
bound socket sock. The actual details of this data object is not important, but what is important is that the
data object should hold these properties: host as the dotted local IP address, port as the listening port
number, type as one of “udp”, “tcp”, “tls” or “sctp” to indicate the transport type, secure as Boolean
indicating whether the transport is secure or not, and reliable and congestionControlled as
Booleans indicating whether the transport is reliable and congestion controlled, respectively, or not.

Such a data object is supplied to the constructor of the Stack object. The application also needs to install
itself as a listener of the events from the Stack object, so that it can know about incoming call or successful
call events, etc.

class Stack(object):
 def __init__(self, app, transport):
 … # construct a Stack

IMPLEMENTING SIP TELEPHONY

- 29 -

Application Callback Interface

Here, the transport argument is of type TransportInfo or something similar, and the app argument
is a reference to the application. The Stack object invokes various methods on the app object. In particular
the app object must implement several interface methods: send, sending, createServer,
receivedRequest, receivedResponse, cancelled, dialogCreated, authenticate and
createTimer. All these interface methods take the last argument as a reference to the Stack object that
is calling the method. This allows the application to use multiple stacks, e.g., one for UDP and another for
TCP transport.

To send some data on the transport to some destination, the Stack object calls the app.send method with
first parameter as the data string to be sent and the second parameter as a host-port tuple, e.g., (‘192.1.2.3’,
5060). Thus the application must implement the following method.

 def send(self, data, addr, stack):
 'send data (str) to addr of form ('192.1.2.3', 5060).'

When the Stack receives an incoming request and needs to create a UAS (user agent server), it invokes the
app.createServer method with first argument as the request Message and second as the URI from
the request line. The application must implement the method and return either a valid UserAgent object if
it knows how to handle this incoming request, else None if it does not know how to handle this incoming
request. For example, a client implementation will typically return None for a REGISTER request.

 def createServer(self, request, uri, stack):
 return UserAgent(stack, request) if request.method != “REGISTER” else None

The Stack invokes receivedRequest and receivedResponse methods on app to indicate
incoming request or response associated with a UserAgent. The first argument is the UserAgent object
reference, and the second is the Message representing the request or response.

 def receivedRequest(self, ua, request, stack): …
 def receivedResponse(self, ua, response, stack): …

The Stack invokes the app.sending method to indicate that a message is about to be sent on a
UserAgent. This method gets invoked before doing any DNS resolution for destination address, whereas
the app.send gets invoked to actually send a formatted message string to the destination address. The
sending method gives an opportunity to the application to inspect and modify the Message if needed
before it is sent out.

 def sending(self, ua, message, stack): …

If an incoming request, typically INVITE, is cancelled by remote endpoint and the Stack receives a
CANCEL request, then it invokes app.cancelled instead of app.receivedRequest. The second
argument is the original request Message which was cancelled. This allows the Stack to handle the
CANCEL internally, while still inform the application about the cancellation of the original request.

- 30 -

 def cancelled(self, ua, request, stack): …

Sometimes the Stack needs to convert an existing UAS or UAC to a SIP dialog, e.g., while sending or
receiving 2xx response to INVITE it creates a Dialog out of UserAgent. The application might have
stored a reference to the original UserAgent object. The stack invokes the app.dialogCreated
method to inform the application that a new dialog has been created from the previous UAC or UAS, and the
application can then update its reference.

 def dialogCreated(self, dialog, ua, stack): …

In our implementation the Dialog class is derived from the UserAgent class so that it can reuse a number
of member variables and certain methods.

When the Stack receives a 401 or 407 response for an outbound request, it tries to authenticate and retry the
request. To do so, it needs the credentials from the application. It invokes the app.authenticate
method to get the credentials from the application. The application should populate the authentication
username and password properties in the second argument, which is an object. If the credentials are
known and populated in the object, the application returns True, otherwise it returns False.

 def authenticate(self, ua, obj, stack):
 obj.username, obj.password = “kundan”, “mysecret”
 return True

Finally, the last interface method is for creating a timer. Since the core SIP implementation is independent of
the thread or event model, whereas the timers in the SIP state machines require the knowledge of the model,
we tried to remove this dependency by using the interface method, app.createTimer.

 def createTimer(self, app, stack):
 return Timer(app)

This method must return a valid application defined Timer object. An example Timer class is pseudo-
coded below. The constructor takes an object, on which the timer callback timedout is invoked. The
Timer object provides a start([delay]) and stop() methods to control the timer. The delay
property stores the delay supplied in the last call to start so that subsequent calls without an argument can
reuse the previous value. The delay is supplied in milliseconds.

class Timer(object):
 def __init__(self, app): self.delay=0; self.app = app; …# will invoke app.timedout(self) on timeout
 def start(self, delay=None): … # start the timer
 def stop(self): … # stop the timer

Reason for design choice

While going through this section you might have felt that the interface is very complex. Please trust me on
this – given the requirement of keeping the thread-event model outside the SIP implementation, this is a very

IMPLEMENTING SIP TELEPHONY

- 31 -

clean and well documented interface. There is some complexity because of the added flexibility requirement.
Keeping the thread-event model outside the SIP implementation allows us to implement and experiment with
various threading models for performance evaluation. Moreover, my source code has example client which
implements these interface methods along with the Timer class.

Application method interface

Now that we have described the application interface from Stack to the application, let’s look at the
methods exposed by the Stack which can be invoked by the application. A simple application will typically
need to create a Stack object and invoke the received method whenever any data is available on the
associated transport for this stack. Occasionally the application may need to access the URI representing the
listening point for this Stack, so that it can construct other addresses, e.g., Contact header. Note that you
must create a new URI if needed instead of modifying the uri property.

 stack = Stack(self, TransportInfo(sock))
 …
 stack.received(dataStr, (remoteHost, remotePort))
 …
 c = Header(str(stack.uri), ‘Contact’)
 c.value.uri.user = “kundan”

Constructing and destroying the Stack

Let’s define the Stack class. We maintain several properties in the Stack. Each stack has a list of SIP
methods, serverMethods, that are supported on the incoming direction. The tag property stores a
unique tag value that gets added in various To and From headers. The stack also maintains two tables: one for
all the Transactions and other for all the Dialogs, which have been created.

As mentioned before the constructor takes a reference to the application to invoke the callback and a
reference to the transport information object

class Stack(object):
 def __init__(self, app, transport):
 self.tag = str(random.randint(0,2**31))
 self.app, self.transport = app, transport
 self.closing = False
 self.dialogs, self.transactions = dict(), dict()
 self.serverMethods = ['INVITE','BYE','MESSAGE','SUBSCRIBE','NOTIFY']

The destructor is analogous which cleans up all the references to dialogs and transaction. We keep an internal
property named closing to know whether the stack is being closed. Certain operations are not done on a
stack that is closing, e.g., a new send request should be ignored.

 def __del__(self):
 self.closing = True
 for d in self.dialogs: del self.dialogs[d]
 for t in self.transactions: del self.transactions[t]

- 32 -

 del self.dialogs; del self.transactions

Listening URI, new Call-ID and Via header

The uri property represents the local listening transport. The URI scheme is “sips:” for secure transport and
“sip:” for non-secure. The host and port portions are derived from the original transport information supplied
in the constructor.

 @property
 def uri(self):
 transport = self.transport
 return URI(((transport.type == 'tls') and 'sips' or 'sip') + ':' + transport.host + ':' + str(transport.port))

The stack also provides an internal method to create a new Call-ID based on some random number and
local transport host name. Usually the application doesn’t need to use this method. This is used by other
modules in the stack implementation to create a new call identifier.

 @property
 def newCallId(self):
 return str(random.randint(0,2**31)) + '@' + (self.transport.host or 'localhost')

Similarly, the stack has an internal method to create a new Header object representing the Via header. In
particular it uses the transport information to populate the SIP transport type, listening host name and port
number. The rport header parameter is put without any value.

From RFC3261 p.39 – When the UAC creates a request, it MUST insert a Via into that request. The protocol
name and protocol version in the header field MUST be SIP and 2.0, respectively.

 def createVia(self, secure=False):
 if not self.transport: raise ValueError, 'No transport in stack'
 if secure and not self.transport.secure: raise ValueError, 'Cannot find a secure transport'
 return Header('SIP/2.0/' +self.transport.type.upper()+' '+self.transport.host + ':' + str(self.transport.port) + ';rport', 'Via')

Sending and receiving on transport

To send a message to the transport via this Stack, the other modules invoke the send method with the
data. The destination address is supplied if available, but may be derived from the message itself if needed. If
the destination address is supplied, it must be either a URI or a host-port tuple. If it is a URI, then the host-
port tuple is derived from the host and port portion of the URI. If port number is missing, then default SIP
port number is used. If the data to be sent is a Message object, then it is formatted into a string. Once we
have the data string and destination host-port tuple, we can invoke the application’s send method to actually
send the data using the associated transport. TODO: why is transport supplied?

 def send(self, data, dest=None, transport=None):

IMPLEMENTING SIP TELEPHONY

- 33 -

 if dest and isinstance(dest, URI):
 if not uri.host: raise ValueError, 'No host in destination uri'
 dest = (dest.host, dest.port or self.transport.type == 'tls' and self.transport.secure and 5061 or 5060)
 … # additional processing on Message if needed
 self.app.send(str(data), dest, stack=self)

We need to do some additional processing on the SIP message based on the specification before it is sent out.

From RFC3261 p.143 – A client that sends a request to a multicast address MUST add the "maddr" parameter to
its Via header field value containing the destination multicast address, and for IPv4, SHOULD add the "ttl"
parameter with a value of 1.

Secondly, if a response needs to be sent and no destination address is supplied, then we use the viaUri
property of the top-most Via header of the response, to decide where to send the response. Please see the
description on how viaUri property is generated earlier in this chapter.

 if isinstance(data, Message):
 if data.method: # request
 if dest and isMulticast(dest[0]):
 data.first('Via')['maddr'], data.first('Via')['ttl'] = dest[0], 1
 elif data.response: # response
 if not dest:
 dest = data.first('Via').viaUri.hostPort

When the application receives a message on the transport, it must invoke the received method on the
stack to supply the received message to the stack. The source address in the form of host-port tuple is also
supplied by the application. This is the only method that the application needs to invoke on the incoming
direction of a message.

In this method the stack parses the received data string into a SIP message. The message is then handed over
to different methods for handling a request or a response. TODO: we need to send a 400 response if there is
parsing error for a non-ACK request, and response can be sent.

 def received(self, data, src):
 try:
 m = Message(data)
 uri = URI((self.transport.secure and 'sips' or 'sip') + ':' + str(src[0]) + ':' + str(src[1]))
 if m.method:
 … # additional checks on request
 self._receivedRequest(m, uri)
 elif m.response:
 self._receivedResponse(m, uri)
 else: raise ValueError, 'Received invalid message'
 except ValueError, E:
 if _debug: print 'Error in received message:', E

- 34 -

For a received request, there are some additional checks that need to be done. In particular, it needs to check
if a Via header exists, and if the top-most Via header is different from the source address, then it needs to
update the top-most Via header with the received and rport attributes correctly.

 if m.Via == None: raise ValueError, 'No Via header in request'
 via = m.first('Via')
 if via.viaUri.host != src[0] or via.viaUri.port != src[1]:
 via['received'], via.viaUri.host = src[0], src[0]
 if 'rport' in via: via['rport'] = src[1]
 via.viaUri.port = src[1]

Request processing

When an incoming request is received, we check if a matching transaction exists or not for this request. This
is done by invoking the findTransaction method with the transaction identifier derived from the
branch parameter of the top-most Via header, and optionally the request method. Usually the transaction
identifier for CANCEL and ACK are different than the original INVITE. Hence we need the request method
to distinguish between the two cases.

One special case is when the request method is ACK and the branch parameter is “0”. Some existing
implementation, such as “iptel.org” service, always puts a branch parameter of “0” in the ACK. Thus if
there are multiple previous transaction’s ACK, the new request will match the previous transaction’s ACK.
Either we need to fix the code to handle end-to-end ACK correctly in findTransaction, or we can do a
work-around of not matching an ACK with branch as “0” to a transaction.

 def _receivedRequest(self, r, uri):
 branch = r.first('Via').branch
 if r.method == 'ACK' and branch == '0':
 t = None
 else:
 t = self.findTransaction(Transaction.createId(branch, r.method))

If a transaction is found, the request is delivered to the transaction object for further processing, and the stack
module doesn’t need to care about this request anymore.

 if not t:
 … # processing when transaction not found
 else:
 t.receivedRequest(r)

If no matching transaction is found, then a new server transaction needs to be created to handle the request.
The creation of server transaction can be done by the dialog layer if the request is associated with an existing
dialog, or by the UserAgent itself. If a new server transaction cannot be created for some reason, it sends a
“404 Not Found” response to the source via the transport layer if the request is not ACK.

 if not t:
 app = None # object through which new transaction is created

IMPLEMENTING SIP TELEPHONY

- 35 -

 if r.method != 'CANCEL' and 'tag' in r.To:
 … # process an in-dialog request
 elif r.method != 'CANCEL':
 … # process out-of-dialog request
 else:
 … # process a CANCEL request
 if app:
 t = Transaction.createServer(self, app, r, self.transport, self.tag)
 elif r.method != 'ACK':
 self.send(Message.createResponse(404, "Not found", None, None, r))

If the request is a CANCEL request, then the original INVITE transaction is searched for the branch
parameter. If an original transaction is found, then the new server transaction is created out of the user of this
original transaction object, which could be a UserAgent or Dialog object associated with that original
transaction. If no original transaction is found, then appropriate response is returned via the transport layer.

 o = self.findTransaction(Transaction.createId(r.first('Via').branch, 'INVITE')) # original transaction
 if not o:
 self.send(Message.createResponse(481, "Original transaction does not exist", None, None, r))
 return
 else:
 app = o.app

If the request is not CANCEL and a tag parameter is present in the To header indicating that this request
belongs to an existing dialog, then we search for an existing matching dialog. If a matching dialog is not
found, then “481 Dialog does not exist” response is returned using the transport layer for non-ACK requests.
For an ACK request if a matching dialog is not found, then we try to locate the original INVITE transaction.
If a transaction is found, then the new request is delivered to that original transaction, otherwise we ignore the
ACK request. No server transaction is created for an ACK request. TODO: check if this is the right
processing in this case. If a matching dialog is found, then the new server transaction is created using that
dialog object.

 d = self.findDialog(r)
 if not d: # no dialog found
 if r.method != 'ACK':
 self.send(Message.createResponse(481, 'Dialog does not exist', None, None, r))
 else: # ACK
 if not t and branch != '0': t = self.findTransaction(Transaction.createId(branch, 'INVITE'))
 if t: t.receivedRequest(r)
 else: print 'No existing transaction for ACK'
 return
 else: # dialog found
 app = d

If the request is not CANCEL and there is no tag parameter in the To header, which means this is an out-of-
dialog request, then the processing is as follows. The stack invokes the application’s callback to create a new
UAS, i.e., UserAgent object in server mode. If the application accepts the request and creates a
UserAgent object then the new server transaction is created out of this UserAgent object, otherwise a
“405 Method not allowed” response is returned for non-ACK requests via the transport layer.

- 36 -

 u = self.createServer(r, uri)
 if u:
 app = u
 elif r.method == 'OPTIONS':
 … # handle OPTIONS separately
 elif r.method != 'ACK':
 self.send(Message.createResponse(405, 'Method not allowed', None, None, r))
 return

The Stack should respond to an out-of-dialog OPTIONS request event if the application doesn’t want to
create UAS. We do this by creating a “200 OK” response with the Allow header containing list of supported
methods, but no message body – since the stack doesn’t know about the session description.

 elif r.method == 'OPTIONS':
 m = Message.createResponse(200, 'OK', None, None, r)
 m.Allow = Header('INVITE, ACK, CANCEL, BYE, OPTIONS', 'Allow')
 self.send(m)
 return

Response processing

If the incoming message is parsed into a response, the processing is as follows. If the Via header is missing,
it generates an error. Otherwise it extracts the branch parameter from the top-most Via header, and the
method attribute from the CSeq header. These properties are used to create a transaction identifier to match
against all existing transactions.

 def _receivedResponse(self, r, uri):
 if not r.Via: raise ValueError, 'No Via header in received response'
 branch = r.first('Via').branch
 method = r.CSeq.method
 t = self.findTransaction(Transaction.createId(branch, method))

If a matching transaction is found for the response, then the response is handed over to the transaction object
for further processing.

 if not t:
 … # transaction not found
 else:
 t.receivedResponse(r)

If no matching transaction is found for the response, then the processing depends on the response and original
request type. If the response is a 2xx-class response of an INVITE request, then we try to find a matching
dialog for the response. If a matching dialog is found, the response is handed over to the Dialog object for
further processing. If no matching dialog is found, it generates an error. Similarly, for all other responses it
generates an error if no matching transaction is found.

IMPLEMENTING SIP TELEPHONY

- 37 -

 if method == 'INVITE' and r.is2xx: # success of INVITE
 d = self.findDialog(r)
 if not d: raise ValueError, 'No transaction or dialog for 2xx of INVITE'
 else: d.receivedResponse(None, r)
 else: raise ValueError, 'No transaction for response'

Searching dialog and transaction

As mentioned before, the Stack object maintains a table of active Dialog and Transaction objects. The
findDialog method locates an existing dialog either by a dialog identifier string or using a Message
object. The Dialog.extractId method is used to extract a dialog identifier string from a Message
object. As we will see later, a dialog identifier consists of the Call-Id, local-tag and remote-tag
properties. The method returns None if a dialog is not found.

 def findDialog(self, arg):
 return self.dialogs.get(isinstance(arg, Message) and Dialog.extractId(arg) or str(arg), None)

The findTransaction method can be used to locate an existing Transaction object given the
transaction identifier string. The method returns None, if a transaction is not found.

 def findTransaction(self, id):
 return self.transactions.get(id, None)

The findOtherTransaction method returns another transaction other than the specified original
transaction orig that matches the given request r of type Message. Although the implementation
described below iterates through all transactions to find a match, a more efficient hash table can be built for
such operation. The Transaction.equals method is invoked to compare the request against a
transaction such that it is different from the original transaction. The method returns None if no other
transaction is found. The method is useful in request merging and loop-detection logic in the UAS
implementation.

 def findOtherTransaction(self, r, orig):
 for t in self.transactions.values():
 if t != orig and Transaction.equals(t, r, orig): return t
 return None

Wrapper for application callbacks

To finish up the implementation of the Stack class, we define a bunch of wrapper methods to shield the
callback invocation between the rest of the SIP implementation and the application. The rest of the SIP layers
invoke these wrapper methods on the Stack, which in turn invokes the application callback. These wrapper
methods are typically invoked by UAS/UAC or dialog layer. This allows us to be consistent across these

- 38 -

callbacks by supplying the Stack reference as the last parameter in all the application callbacks, as we had
discussed earlier.

 def createServer(self, request, uri): return self.app.createServer(request, uri, self)
 def sending(self, ua, message): self.app.sending(ua, message, self)
 def receivedRequest(self, ua, request): self.app.receivedRequest(ua, request, self)
 def receivedResponse(self, ua, response): self.app.receivedResponse(ua, response, self)
 def cancelled(self, ua, request): self.app.cancelled(ua, request, self)
 def dialogCreated(self, dialog, ua): self.app.dialogCreated(dialog, ua, self)
 def authenticate(self, ua, header): return self.app.authenticate(ua, header, self)
 def createTimer(self, obj): return self.app.createTimer(obj, self)

The Stack layer we described controls the main core logic of the SIP implementation as well as the
interface between the SIP implementation and the application. The other layers such as transaction,
UAC/UAS and dialog are very precisely described in RFC3261, hence should be easier to implement
compared to the Stack class. We describe the implementation of the other layers next.

User agent (UAC and UAS)

From RFC3261 p.34 – A user agent represents an end system. It contains a user agent client (UAC), which
generates requests, and a user agent server (UAS), which responds to them. A UAC is capable of generating a
request based on some external stimulus (the user clicking a button, or a signal on a PSTN line) and processing
a response. A UAS is capable of receiving a request and generating a response based on user input, external
stimulus, the result of a program execution, or some other mechanism.

We implement UAC and UAS using a single class UserAgent. The object behaves differently depending
on whether it is a client (UAC) or a server (UAS). The property server identifies whether it is a server
(True) or a client (False). A UAC or a UAS can create a dialog on certain conditions, such as when a 2xx-
class response to an INVITE UAC is received or when a 2xx class response to an INVITE UAS is sent.

UAC and UAS procedures depend strongly on two factors. First, based on whether the request or response is
inside or outside of a dialog, and second, based on the method of a request.

The procedure to send a request or response or process an incoming request or response in a user agent is
slightly different than that in a dialog context. But there are a number of properties that are common between
a user agent and a dialog. Instead of defining separate independent classes for implementing a user agent and
a dialog, we derive the Dialog class from the UserAgent class. Most of the properties defined here are
reused in the derived class Dialog.

Constructor and properties

The constructor for a UAS takes the original incoming request Message whereas for a UAC it should not.
The first argument is a reference to the associated Stack object so that various functions on the stack can be
performed. The second argument is the optional original request needed for constructing a UAS. The last
argument in the constructor defines whether this is a UAS or UAC.

class UserAgent(object):
 def __init__(self, stack, request=None, server=None):
 self.stack, self.request = stack, request

IMPLEMENTING SIP TELEPHONY

- 39 -

 self.server = server if server != None else (request != None)

Each user agent stores a reference to the last Transaction associated with this user agent. It also stores a
reference to the cancel request Message is it was sent or needs to be sent. We will describe these properties
later when they are used.

 self.transaction, self.cancelRequest = None, None

The callId property refers to the unique Call-ID for this user agent or dialog. It is either extracted from
the existing request Message for a UAS, or created randomly on the stack context for a UAC.

 self.callId = request['Call-ID'].value if request and request['Call-ID'] else stack.newCallId

Each user agent or dialog has localParty and remoteParty properties that refer to the SIP Address
of the local entity or the remote entity. These addresses are put in the From and To headers of the generated
request or extracted from the To and From headers of the received request, respectively.

 self.remoteParty = request.From.value if request and request.From else None
 self.localParty = request.To.value if request and request.To else None

The To and From headers also need a tag parameter. The user agent and dialog objects store the unique
localTag and remoteTag properties. The local tag is derived from the unique tag associated with the
stack context, but with additional randomness to it. This allows the tag parameter to uniquely identify the
stack but also be different for different dialogs or user agents.

 self.localTag, self.remoteTag = stack.tag + str(random.randint(0,10*10)), None

The subject property is used for the Subject header in the SIP request within this user agent or dialog.

 self.subject = request.Subject.value if request and request.Subject else None

From RFC3261 – A dialog contains certain pieces of state needed for further message transmissions within the
dialog. This state consists of the dialog ID, a local sequence number (used to order requests from the UA to its
peer), a remote sequence number (used to order requests from its peer to the UA), a local URI, a remote URI,
remote target, a boolean flag called "secure", and a route set, which is an ordered list of URIs. The route set is
the list of servers that need to be traversed to send a request to the peer.

The secure property indicates whether this user agent or dialog is operating on a secure connection using
the “sips:” URI scheme or not.

 self.secure = (request and request.uri.scheme == 'sips')

The outgoing SIP requests should have a Max-Forwards header to limit the number of SIP hops to
traverse among intermediate proxies. Similarly, the request can have a Route header to pre-determine the

- 40 -

SIP hops to traverse for a request. These headers are generated using the maxForwards and routeSet
properties. The default value of Max-Forwards header is 70. The routeSet is either derived using the
Record-Route header as described later or pre-set by the application, e.g., for setting the outbound proxy.

 self.maxForwards, self.routeSet = 70, []

The exact host-port to be used for sending a request or response is derived from the DNS lookup for outgoing
requests, and for response from various header fields of incoming requests. The remoteCandidates
property stores the list of potential DNS entries to try for sending an initial request. The localTarget and
the remoteTarget properties store the local and remote addresses to which a request or response will be
sent in a user agent or dialog.

 self.localTarget, self.remoteTarget, self.remoteCandidates = None, None, None

The local sequence number is incremented for subsequent requests in a dialog. The remote sequence number
is used to detect whether an incoming request in a dialog is obsolete and should be ignored or not. These
pieces of state are stored in the localSeq and remoteSeq properties, respectively.

 self.localSeq, self.remoteSeq = 0, 0

Certain outgoing requests or responses need to have a Contact header that represents the local user’s
contact, so that incoming request that be sent on that contact for subsequent requests in this dialog. For
example, the UAS can return a Contact header in the 2xx-class response to an incoming INVITE request.
The remote party should then use the address specified in the Contact header to send future requests such
as BYE within this dialog, provided the constraints of route set allows it. We define the contact property
to store this local SIP address, such that the user part of the address is derived from the localParty
address whereas the host and port parts are derived from the local listening point in the stack context.

 self.contact = Address(str(stack.uri))
 if self.localParty and self.localParty.uri.user: self.contact.uri.user = self.localParty.uri.user

For example, if the local party is “sip:kundan@example.net” and the stack’s listening address is
“sip:192.1.2.3:5080” then the contact property represents the address “sip:kundan@192.1.2.3:5080”.

Besides the above properties we also need two additional properties specific for our implementation. In
particular the autoack property indicates whether the implementation should automatically send an ACK
to the 2xx-class response to an incoming INVITE request, or whether the implementation should let the
application send the ACK explicitly. If the implementation sends the ACK automatically, then it performs
some functions of the application as per RFC 3261, because the specification defines that ACK for 2xx-class
response to INVITE should be sent end-to-end by the application. However, in practice the application may
not want to deal with the specifics of SIP implementation. By default we let the SIP implementation
automatically send the ACK, but if the application does want to be in control of sending the ACK, e.g., to
change the message body in the ACK, then it can set the autoack property to False.

 self.autoack = True # whether to send an ACK to 200 OK of INVITE automatically or let application send it.

IMPLEMENTING SIP TELEPHONY

- 41 -

Finally, the auth property stores the various authentication contexts such as user credentials and other
properties. The authentication context is used for authenticating an outgoing request that has been challenged
by the remote party.

 self.auth = dict() # to store authentication context

A string representation of the object just displays the Call-ID property of the object and the name of the
class, whether it is a Dialog or a UserAgent.

 def __repr__(self):
 return '<%s call-id=%s>'%(isinstance(self, Dialog) and 'Dialog' or 'UserAgent', self.callId)

Generating the request

The application can create a new out-of-dialog request using the createRequest method on a newly
created UserAgent object. The method sets the UserAgent object as a UAC.

From RFC3261 p.35 – Examples of requests sent outside of a dialog include an INVITE to establish a session
and an OPTIONS to query for capabilities.

 ua = UserAgent(stack)
 …
 m = ua.createRequest(“INVITE”, sdp, “application/sdp”)

The method first checks whether the needed properties such as remoteParty and localParty are set
correctly or not. It is an error if the remote party address is unknown when creating a request. If the local
party address is unknown, the implementation uses the anonymous address.

The From header field allows for a display name. A UAC SHOULD use the display name "Anonymous", along
with a syntactically correct, but otherwise meaningless URI (like sip:thisis@anonymous.invalid), if the identity of
the client is to remain hidden.

 def createRequest(self, method, content=None, contentType=None):
 self.server = False
 if not self.remoteParty: raise ValueError, 'No remoteParty for UAC'
 if not self.localParty: self.localParty = Address('"Anonymous" <sip:anonymous@anonymous.invalid>')

(UAC) The initial Request-URI of the message SHOULD be set to the value of the URI in the To field.

One notable exception is the REGISTER method; behavior for setting the Request-URI of REGISTER is given in
Section 10. (In Section 10) The "userinfo" and "@" components of the SIP URI MUST NOT be present.

 uri = URI(str(self.remoteTarget if self.remoteTarget else self.remoteParty.uri)) # TODO: use original URI for ACK
 if method == 'REGISTER': uri.user = None # no uri.user in REGISTER

- 42 -

 if not self.secure and uri.secure: self.secure = True
 if method != 'ACK' and method != 'CANCEL': self.localSeq = self.localSeq + 1

The To header field first and foremost specifies the desired "logical" recipient of the request, or the address-of-
record of the user or resource that is the target of this request. This may or may not be the ultimate recipient of
the request.

(UAC) A request outside of a dialog MUST NOT contain a To tag; the tag in the To field of a request identifies the
peer of the dialog. Since no dialog is established, no tag is present.

(Dialog) The URI in the To field of the request MUST be set to the remote URI from the dialog state.

 To = Header(str(self.remoteParty), 'To')
 To.value.uri.secure = self.secure

The From header field indicates the logical identity of the initiator of the request, possibly the user's address-of-
record. Like the To header field, it contains a URI and optionally a display name. It is used by SIP elements to
determine which processing rules to apply to a request (for example, automatic call rejection). As such, it is very
important that the From URI not contain IP addresses or the FQDN of the host on which the UA is running, since
these are not logical names.

(UAC) The From field MUST contain a new "tag" parameter, chosen by the UAC.

(Dialog) The From URI of the request MUST be set to the local URI from the dialog state. The tag in the From
header field of the request MUST be set to the local tag of the dialog ID. If the value of the remote or local tags is
null, the tag parameter MUST be omitted from the To or From header fields, respectively.

 From = Header(str(self.localParty), 'From')
 From.value.uri.secure = self.secure
 From.tag = self.localTag

The CSeq header field serves as a way to identify and order transactions. It consists of a sequence number and
a method. The method MUST match that of the request. For non-REGISTER requests outside of a dialog, the
sequence number value is arbitrary. The sequence number value MUST be expressible as a 32-bit unsigned
integer and MUST be less than 2**31. As long as it follows the above guidelines, a client may use any
mechanism it would like to select CSeq header field values.

 CSeq = Header(str(self.localSeq) + ' ' + method, 'CSeq')

The Call-ID header field acts as a unique identifier to group together a series of messages. It MUST be the same
for all requests and responses sent by either UA in a dialog.

(Dialog) The Call-ID of the request MUST be set to the Call-ID of the dialog.

 CallId = Header(self.callId, 'Call-ID')

The Max-Forwards header field serves to limit the number of hops a request can transit on the way to its
destination. It consists of an integer that is decremented by one at each hop. If the Max-Forwards value reaches
0 before the request reaches its destination, it will be rejected with a 483(Too Many Hops) error response.

IMPLEMENTING SIP TELEPHONY

- 43 -

A UAC MUST insert a Max-Forwards header field into each request it originates with a value that SHOULD be
70. This number was chosen to be sufficiently large to guarantee that a request would not be dropped in any SIP
network when there were no loops, but not so large as to consume proxy resources when a loop does occur.
Lower values should be used with caution and only in networks where topologies are known by the UA.

 MaxForwards = Header(str(self.maxForwards), 'Max-Forwards')

When the UAC creates a request, it MUST insert a Via into that request. The protocol name and protocol version
in the header field MUST be SIP and 2.0, respectively. The Via header field value MUST contain a branch
parameter. This parameter is used to identify the transaction created by that request. This parameter is used by
both the client and the server.

 Via = self.stack.createVia(self.secure)
 Via.branch = Transaction.createBranch([To.value, From.value, CallId.value, CSeq.number], False)
 # Transport adds other parameters such as maddr, ttl

 if not self.localTarget:
 self.localTarget = self.stack.uri.dup()
 self.localTarget.user = self.localParty.uri.user

(UAC) The Contact header field provides a SIP or SIPS URI that can be used to contact that specific instance of
the UA for subsequent requests. The scope of the Contact is global. That is, the Contact header field value
contains the URI at which the UA would like to receive requests, and this URI MUST be valid even if used in
subsequent requests outside of any dialogs. If the Request-URI or top Route header field value contains a SIPS
URI, the Contact header field MUST contain a SIPS URI as well.

(Dialog) A UAC SHOULD include a Contact header field in any target refresh requests within a dialog, and unless
there is a need to change it, the URI SHOULD be the same as used in previous requests within the dialog. If the
"secure" flag is true, that URI MUST be a SIPS URI.

 Contact = Header(str(self.localTarget), 'Contact')
 Contact.value.uri.secure = self.secure

A valid SIP request formulated by a UAC MUST, at a minimum, contain the following header fields: To, From,
CSeq, Call-ID, Max-Forwards, and Via; all of these header fields are mandatory in all SIP requests.

 headers = [To, From, CSeq, CallId, MaxForwards, Via, Contact]

In some special circumstances, the presence of a pre-existing route set can affect the Request-URI of the
message. A pre-existing route set is an ordered set of URIs that identify a chain of servers, to which a UAC will
send outgoing requests that are outside of a dialog. Commonly, they are configured on the UA by a user or
service provider manually, or through some other non-SIP mechanism. When a provider wishes to configure a
UA with an outbound proxy, it is RECOMMENDED that this be done by providing it with a pre-existing route set
with a single URI, that of the outbound proxy.

When a pre-existing route set is present, the procedures for populating the Request-URI and Route header field
detailed in Section 12.2.1.1 MUST be followed (even though there is no dialog), using the desired Request-URI
as the remote target URI.

- 44 -

 if self.routeSet:
 for route in map(lambda x: Header(str(x), 'Route'), self.routeSet):
 route.value.uri.secure = self.secure
 headers.append(route)

If the UAC supports extensions to SIP that can be applied by the server to the response, the UAC SHOULD
include a Supported header field in the request listing the option tags (Section 19.2) for those extensions.

If the UAC wishes to insist that a UAS understand an extension that the UAC will apply to the request in order to
process the request, it MUST insert a Require header field into the request listing the option tag for that
extension. If the UAC wishes to apply an extension to the request and insist that any proxies that are traversed
understand that extension, it MUST insert a Proxy-Require header field into the request listing the option tag for
that extension.

 # app adds other headers such as Supported, Require and Proxy-Require

SIP requests MAY contain a MIME-encoded message-body. Regardless of the type of body that a request
contains, certain header fields must be formulated to characterize the contents of the body.

 if contentType:
 headers.append(Header(contentType, 'Content-Type'))
 self.request = Message.createRequest(method, str(uri), headers, content)
 return self.request

Generating a REGISTER request

To: The To header field contains the address of record whose registration is to be created, queried, or modified.
The To header field and the Request-URI field typically differ, as the former contains a user name. This address-
of-record MUST be a SIP URI or SIPS URI.

From: The From header field contains the address-of-record of the person responsible for the registration. The
value is the same as the To header field unless the request is a third-party registration.

 def createRegister(self, aor):
 if aor: self.remoteParty = Address(str(aor))
 if not self.localParty: self.localParty = Address(str(self.remoteParty))

Except as noted, the construction of the REGISTER request and the behavior of clients sending a REGISTER
request is identical to the general UAC behavior

 return self.createRequest('REGISTER')

Sending the request

From RFC3261 p.41 – The destination for the request is then computed. Unless there is local policy specifying
otherwise, the destination MUST be determined by applying the DNS procedures described in [4] as follows. If

IMPLEMENTING SIP TELEPHONY

- 45 -

the first element in the route set indicated a strict router (resulting in forming the request as described in Section
12.2.1.1), the procedures MUST be applied to the Request-URI of the request. Otherwise, the procedures are
applied to the first Route header field value in the request (if one exists), or to the request's Request-URI if there
is no Route header field present. These procedures yield an ordered set of address, port, and transports to
attempt. Independent of which URI is used as input to the procedures of [4], if the Request-URI specifies a SIPS
resource, the UAC MUST follow the procedures of [4] as if the input URI were a SIPS URI.

Local policy MAY specify an alternate set of destinations to attempt. If the Request-URI contains a SIPS URI, any
alternate destinations MUST be contacted with TLS. Beyond that, there are no restrictions on the alternate
destinations if the request contains no Route header field. This provides a simple alternative to a pre-existing
route set as a way to specify an outbound proxy. However, that approach for configuring an outbound proxy is
NOT RECOMMENDED; a pre-existing route set with a single URI SHOULD be used instead. If the request
contains a Route header field, the request SHOULD be sent to the locations derived from its topmost value, but
MAY be sent to any server that the UA is certain will honor the Route and Request-URI policies specified in this
document (as opposed to those in RFC 2543). In particular, a UAC configured with an outbound proxy SHOULD
attempt to send the request to the location indicated in the first Route header field value instead of adopting the
policy of sending all messages to the outbound proxy.

 def sendRequest(self, request):
 if not self.request and request.method == 'REGISTER':
 if not self.transaction and self.transaction.state != 'completed' and self.transaction.state != 'terminated':
 raise ValueError, 'Cannot re-REGISTER since pending registration'
 self.request = request

 if not request.Route: self.remoteTarget = request.uri
 target = self.remoteTarget

 if request.Route:
 routes = request.all('Route')
 if len(routes) > 0:
 target = routes[0].value.uri
 if not target or 'lr' not in target.param: # strict route
 if _debug: print 'strict route target=', target, 'routes=', routes
 del routes[0] # ignore first route
 if len(routes) > 0:
 if _debug: print 'appending our route'
 routes.append(Header(str(request.uri), 'Route'))
 request.Route = routes
 request.uri = target;

 # TODO: remove any Route header in REGISTER request

 self.stack.sending(self, request)

The UAC SHOULD follow the procedures defined in [4] for stateful elements, trying each address until a server is
contacted. Each try constitutes a new transaction, and therefore each carries a different topmost Via header field
value with a new branch parameter. Furthermore, the transport value in the Via header field is set to whatever
transport was determined for the target server.

 # TODO: replace the following with RFC3263 to return multiple candidates. Add TCP and UDP and if possible TLS.
 dest = target.dup()
 dest.port = target.port or target.secure and 5061 or 5060
 if not isIPv4(dest.host):

- 46 -

 try: dest.host = gethostbyname(dest.host)
 except: pass
 if isIPv4(dest.host):
 self.remoteCandidates = [dest]

 # continue processing as if we received multiple candidates
 if not self.remoteCandidates or len(self.remoteCandidates) == 0:
 self.error(None, 'cannot resolve DNS target')
 return
 target = self.remoteCandidates.pop(0)
 if self.request.method != 'ACK': # start a client transaction to send the request
 self.transaction = Transaction.createClient(self.stack, self, self.request, self.stack.transport, target.hostPort)
 else: # directly send ACK on transport layer
 self.stack.send(self.request, target.hostPort)

From RFC3261 p.42 – In some cases, the response returned by the transaction layer will not be a SIP message,
but rather a transaction layer error. When a timeout error is received from the transaction layer, it MUST be
treated as if a 408 (Request Timeout) status code has been received. If a fatal transport error is reported by the
transport layer (generally, due to fatal ICMP errors in UDP or connection failures in TCP), the condition MUST be
treated as a 503 (Service Unavailable) status code.

When the transaction times out we try the next candidate address.

 def timeout(self, transaction):
 if transaction and transaction != self.transaction: # invalid transaction
 return
 self.transaction = None
 if not self.server: # UAC
 if self.remoteCandidates and len(self.remoteCandidates)>0:
 self.retryNextCandidate()
 else:
 self.receivedResponse(None, Message.createResponse(408, 'Request timeout', None, None, self.request))

The following method is invoked to try the next candidate address from the DNS result for the destination.

 def retryNextCandidate(self):
 if not self.remoteCandidates or len(self.remoteCandidates) == 0:
 raise ValueError, 'No more DNS resolved address to try'
 target = URI(self.remoteCandiates.pop(0))
 self.request.first('Via').branch += 'A' # so that we create a different new transaction
 transaction = Transaction.createClient(self.stack, self, self.request, self.stack.transport, target.hostPort)

A transport error in sending a request is treated as “503 Service unavailable”.

 def error(self, transaction, error):
 if transaction and transaction != self.transaction: # invalid transaction
 return
 self.transaction = None
 if not self.server: # UAC
 if self.remoteCandidates and len(self.remoteCandidates)>0:
 self.retryNextCandidate()

IMPLEMENTING SIP TELEPHONY

- 47 -

 else:
 self.receivedResponse(None, Message.createResponse(503, 'Service unavailable - ' + error, None, None,
self.request))

Processing responses

From RFC3261 p.42 – Responses are first processed by the transport layer and then passed up to the
transaction layer. The transaction layer performs its processing and then passes the response up to the TU. The
majority of response processing in the TU is method specific. However, there are some general behaviors
independent of the method.

 def receivedResponse(self, transaction, response):
 if transaction and transaction != self.transaction:
 if _debug: print 'Invalid transaction received %r!=%r'%(transaction, self.transaction)
 return

 If more than one Via header field value is present in a response, the UAC SHOULD discard the message.

 if len(response.all('Via')) > 1:
 raise ValueError, 'More than one Via header in response'
 if response.is1xx:
 if self.cancelRequest:
 cancel = Transaction.createClient(self.stack, self, self.cancelRequest, transaction.transport, transaction.remote)
 self.cancelRequest = None
 else:
 self.stack.receivedResponse(self, response)

If a 401 (Unauthorized) or 407 (Proxy Authentication Required) response is received, the UAC SHOULD follow
the authorization procedures of Section 22.2 and Section 22.3 to retry the request with credentials.

 elif response.response == 401 or response.response == 407: # authentication challenge
 if not self.authenticate(response, self.transaction): # couldn't authenticate
 self.stack.receivedResponse(self, response)
 else:
 if self.canCreateDialog(self.request, response):
 dialog = Dialog.createClient(self.stack, self.request, response, transaction)
 self.stack.dialogCreated(dialog, self)
 self.stack.receivedResponse(dialog, response)
 if self.autoack and self.request.method == 'INVITE':
 dialog.sendRequest(dialog.createRequest('ACK'))
 else:
 self.stack.receivedResponse(self, response)

The global method canCreateDialog determines whether a dialog can be created out of the given
response for the given original request. The current implementation creates a dialog for a 2xx-class response
for the original INVITE or SUBSCRIBE requests.

- 48 -

Dialogs are created through the generation of non-failure responses to requests with specific methods. Within
this specification, only 2xx and 101-199 responses with a To tag, where the request was INVITE, will establish a
dialog. A dialog established by a non-final response to a request is in the "early" state and it is called an early
dialog.

In our implementation we do not support early dialogs.

 @staticmethod
 def canCreateDialog(request, response):
 return response.is2xx and (request.method == 'INVITE' or request.method == 'SUBSCRIBE')

Processing requests

From RFC3261 p46 – When a request outside of a dialog is processed by a UAS, there is a set of processing
rules that are followed, independent of the method.

Note that request processing is atomic. If a request is accepted, all state changes associated with it MUST be
performed. If it is rejected, all state changes MUST NOT be performed.

UASs SHOULD process the requests in the order of the steps that follow in this section (that is, starting with
authentication, then inspecting the method, the header fields, and so on throughout the remainder of this section).

 def receivedRequest(self, transaction, request):
 if transaction and self.transaction and transaction != self.transaction and request.method != 'CANCEL':
 raise ValueError, 'Invalid transaction for received request'
 self.server = True # this becomes a UAS

Once a request is authenticated (or authentication is skipped), the UAS MUST inspect the method of the request.
If the UAS recognizes but does not support the method of a request, it MUST generate a 405 (Method Not
Allowed) response. Procedures for generating responses are described in Section 8.2.6. The UAS MUST also
add an Allow header field to the 405 (Method Not Allowed) response. The Allow header field MUST list the set of
methods supported by the UAS generating the message. The Allow header field is presented in Section 20.5.

If the method is one supported by the server, processing continues.

 #if request.method == 'REGISTER':
 # response = transaction.createResponse(405, 'Method not allowed')
 # response.Allow = Header('INVITE, ACK, CANCEL, BYE', 'Allow') # TODO make this configurable
 # transaction.sendResponse(response)
 # return

However, the Request-URI identifies the UAS that is to process the request. If the Request-URI uses a scheme
not supported by the UAS, it SHOULD reject the request with a 416 (Unsupported URI Scheme) response.

 if request.uri.scheme not in ['sip', 'sips']:
 transaction.sendResponse(transaction.createResponse(416, 'Unsupported URI scheme'))
 return

IMPLEMENTING SIP TELEPHONY

- 49 -

If the request has no tag in the To header field, the UAS core MUST check the request against ongoing
transactions. If the From tag, Call-ID, and CSeq exactly match those associated with an ongoing transaction, but
the request does not match that transaction, the UAS core SHOULD generate a 482 (Loop Detected) response
and pass it to the server transaction.

 if 'tag' not in request.To: # out of dialog request
 if self.stack.findOtherTransaction(request, transaction): # request merging?
 transaction.sendResponse(transaction.createResponse(482, "Loop detected - found another transaction"))
 return

Assuming the UAS decides that it is the proper element to process the request, it examines the Require header
field, if present.

The Require header field is used by a UAC to tell a UAS about SIP extensions that the UAC expects the UAS to
support in order to process the request properly. If a UAS does not understand an option-tag listed in a Require
header field, it MUST respond by generating a response with status code 420 (Bad Extension). The UAS MUST
add an Unsupported header field, and list in it those options it does not understand amongst those in the Require
header field of the request. Note that Require and Proxy-Require MUST NOT be used in a SIP CANCEL request,
or in an ACK request sent for a non-2xx response. These header fields MUST be ignored if they are present in
these requests.

An ACK request for a 2xx response MUST contain only those Require and Proxy-Require values that were
present in the initial request.

 if request.Require: # TODO let the application handle Require header
 if request.method != 'CANCEL' and request.method != 'ACK':
 response = transaction.createResponse(420, 'Bad extension')
 response.Unsupported = Header(str(request.Require.value), 'Unsupported')
 transaction.sendResponse(response)
 return
 if transaction: self.transaction = transaction # store it

The CANCEL method requests that the TU at the server side cancel a pending transaction. The TU determines
the transaction to be cancelled by taking the CANCEL request, and then assuming that the request method is
anything but CANCEL or ACK and applying the transaction matching procedures of Section 17.2.3. The
matching transaction is the one to be cancelled.

The processing of a CANCEL request at a server depends on the type of server. A stateless proxy will forward it,
a stateful proxy might respond to it and generate some CANCEL requests of its own, and a UAS will respond to
it. See Section 16.10 for proxy treatment of CANCEL.

A UAS first processes the CANCEL request according to the general UAS processing described in Section 8.2.
However, since CANCEL requests are hop-by-hop and cannot be resubmitted, they cannot be challenged by the
server in order to get proper credentials in an Authorization header field. Note also that CANCEL requests do not
contain a Require header field.

If the UAS did not find a matching transaction for the CANCEL according to the procedure above, it SHOULD
respond to the CANCEL with a 481 (Call Leg/Transaction Does Not Exist). If the transaction for the original
request still exists, the behavior of the UAS on receiving a CANCEL request depends on whether it has already
sent a final response for the original request. If it has, the CANCEL request has no effect on the processing of
the original request, no effect on any session state, and no effect on the responses generated for the original
request. If the UAS has not issued a final response for the original request, its behavior depends on the method
of the original request. If the original request was an INVITE, the UAS SHOULD immediately respond to the

- 50 -

INVITE with a 487 (Request Terminated). A CANCEL request has no impact on the processing of transactions
with any other method defined in this specification.

Regardless of the method of the original request, as long as the CANCEL matched an existing transaction, the
UAS answers the CANCEL request itself with a 200 (OK) response. This response is constructed following the
procedures described in Section 8.2.6 noting that the To tag of the response to the CANCEL and the To tag in
the response to the original request SHOULD be the same. The response to CANCEL is passed to the server
transaction for transmission.

 if request.method == 'CANCEL':
 original = self.stack.findTransaction(Transaction.createId(transaction.branch, 'INVITE'))
 if not original:
 transaction.sendResponse(transaction.createResponse)
 return
 if original.state == 'proceeding' or original.state == 'trying':
 original.sendResponse(original.createResponse(487, 'Request terminated'))
 transaction.sendResponse(transaction.createResponse(200, 'OK')) # CANCEL response
 # TODO: the To tag must be same in the two responses

Finally, the request is delivered to the application for further processing after the UAS procedures are
applied.

 self.stack.receivedRequest(self, request)

Generating the response

From RFC3261 p.49 – When a UAS wishes to construct a response to a request, it follows the general
procedures detailed in the following subsections. Additional behaviors specific to the response code in question,
which are not detailed in this section, may also be required.

Once all procedures associated with the creation of a response have been completed, the UAS hands the
response back to the server transaction from which it received the request.

 def sendResponse(self, response, responsetext=None, content=None, contentType=None, createDialog=True):
 if not self.request:
 raise ValueError, 'Invalid request in sending a response'
 if isinstance(response, int):
 response = self.createResponse(response, responsetext, content, contentType)

When a UAS responds to a request with a response that establishes a dialog (such as a 2xx to INVITE), the UAS
MUST copy all Record-Route header field values from the request into the response (including the URIs, URI
parameters, and any Record-Route header field parameters, whether they are known or unknown to the UAS)
and MUST maintain the order of those values.

 if createDialog and self.canCreateDialog(self.request, response):
 if self.request['Record-Route']: response['Record-Route'] = self.request['Record-Route']

IMPLEMENTING SIP TELEPHONY

- 51 -

The UAS MUST add a Contact header field to the response. The Contact header field contains an address
where the UAS would like to be contacted for subsequent requests in the dialog (which includes the ACK for a
2xx response in the case of an INVITE). Generally, the host portion of this URI is the IP address or FQDN of the
host. The URI provided in the Contact header field MUST be a SIP or SIPS URI. If the request that initiated the
dialog contained a SIPS URI in the Request-URI or in the top Record-Route header field value, if there was any,
or the Contact header field if there was no Record-Route header field, the Contact header field in the response
MUST be a SIPS URI. The URI SHOULD have global scope (that is, the same URI can be used in messages
outside this dialog). The same way, the scope of the URI in the Contact header field of the INVITE is not limited
to this dialog either. It can therefore be used in messages to the UAC even outside this dialog.

 if not response.Contact:
 contact = Address(str(self.contact))
 if not contact.uri.user: contact.uri.user = self.request.To.value.uri.user
 contact.uri.secure = self.secure
 response.Contact = Header(str(contact), 'Contact')

The UAS then constructs the state of the dialog. This state MUST be maintained for the duration of the dialog.

 dialog = Dialog.createServer(self.stack, self.request, response, self.transaction)
 self.stack.dialogCreated(dialog, self)
 self.stack.sending(dialog, response)
 else:
 self.stack.sending(self, response)

 if not self.transaction: # send on transport
 self.stack.send(response, response.first('Via').viaUri.hostPort)
 else:
 self.transaction.sendResponse(response)

Additionally, the UAS MUST add a tag to the To header field in the response (with the exception of the 100
(Trying) response, in which a tag MAY be present). This serves to identify the UAS that is responding, possibly
resulting in a component of a dialog ID. The same tag MUST be used for all responses to that request, both final
and provisional (again excepting the 100 (Trying)).

 def createResponse(self, response, responsetext, content=None, contentType=None):
 if not self.request:
 raise ValueError, 'Invalid request in creating a response'
 response = Message.createResponse(response, responsetext, None, content, self.request)
 if contentType: response['Content-Type'] = Header(contentType, 'Content-Type')
 if response.response != 100 and 'tag' not in response.To: response.To['tag'] = self.localTag
 return response;

Cancelling a request

From RFC3261 p.53 – The CANCEL request, as the name implies, is used to cancel a previous request sent by
a client. Specifically, it asks the UAS to cease processing the request and to generate an error response to that
request. CANCEL has no effect on a request to which a UAS has already given a final response. Because of
this, it is most useful to CANCEL requests to which it can take a server long time to respond. For this reason,

- 52 -

CANCEL is best for INVITE requests, which can take a long time to generate a response. In that usage, a UAS
that receives a CANCEL request for an INVITE, but has not yet sent a final response, would "stop ringing", and
then respond to the INVITE with a specific error response (a 487).

The following procedures are used to construct a CANCEL request. The Request-URI, Call-ID, To, the numeric
part of CSeq, and From header fields in the CANCEL request MUST be identical to those in the request being
cancelled, including tags. A CANCEL constructed by a client MUST have only a single Via header field value
matching the top Via value in the request being cancelled. Using the same values for these header fields allows
the CANCEL to be matched with the request it cancels (Section 9.2 indicates how such matching occurs).
However, the method part of the CSeq header field MUST have a value of CANCEL. This allows it to be
identified and processed as a transaction in its own right (See Section 17).

 def sendCancel(self):
 if not self.transaction:
 raise ValueError, 'No transaction for sending CANCEL'
 self.cancelRequest = self.transaction.createCancel()

If the request being cancelled contains a Route header field, the CANCEL request MUST include that Route
header field's values. The CANCEL request MUST NOT contain any Require or Proxy-Require header fields.

Once the CANCEL is constructed, the client SHOULD check whether it has received any response (provisional
or final) for the request being cancelled (herein referred to as the "original request").

If no provisional response has been received, the CANCEL request MUST NOT be sent; rather, the client MUST
wait for the arrival of a provisional response before sending the request. If the original request has generated a
final response, the CANCEL SHOULD NOT be sent, as it is an effective no-op, since CANCEL has no effect on
requests that have already generated a final response. When the client decides to send the CANCEL, it creates
a client transaction for the CANCEL and passes it the CANCEL request along with the destination address, port,
and transport. The destination address, port, and transport for the CANCEL MUST be identical to those used to
send the original request.

 if self.transaction.state != 'trying' and self.transaction.state != 'calling':
 if self.transaction.state == 'proceeding':
 transaction = Transaction.createClient(self.stack, self, self.cancelRequest, self.transaction.transport,
self.transaction.remote)
 self.cancelRequest = None
 # else don't send until 1xx is received

Authentication

From RFC3261 p.196 – When the originating UAC receives the 401 (Unauthorized), it SHOULD, if it is able, re-
originate the request with the proper credentials. The UAC may require input from the originating user before
proceeding. Once authentication credentials have been supplied (either directly by the user, or discovered in an
internal keyring), UAs SHOULD cache the credentials for a given value of the To header field and "realm" and
attempt to re-use these values on the next request for that destination. UAs MAY cache credentials in any way
they would like.

When a request receives a 401 or 407 response in a UAC, we invoke the authenticate method. If the
application has supplied the local user’s credentials, then we use that to resend the request in a new
transaction, in the same UAC. If the request was resent, then it returns True, otherwise it returns False.

 def authenticate(self, response, transaction):

IMPLEMENTING SIP TELEPHONY

- 53 -

 a = response.first('WWW-Authenticate') or response.first('Proxy-Authenticate') or None
 if not a:
 return False
 request = Message(str(transaction.request)) # construct a new message

 resend, present = False, False
 for b in request.all('Authorization', 'Proxy-Authorization'):
 if a.realm == b.realm and (a.name == 'WWW-Authenticate' and b.name == 'Authorization' or a.name == 'Proxy-
Authenticate' and b.name == 'Proxy-Authorization'):
 present = True
 break

 if not present and 'realm' in a: # prompt for password
 result = self.stack.authenticate(self, a)
 if not result or 'password' not in a and 'hashValue' not in a:
 return False

Once credentials have been located, any UA that wishes to authenticate itself with a UAS or registrar -- usually,
but not necessarily, after receiving a 401 (Unauthorized) response -- MAY do so by including an Authorization
header field with the request. The Authorization field value consists of credentials containing the authentication
information of the UA for the realm of the resource being requested as well as parameters required in support of
authentication and replay protection.

 value = createAuthorization(a.value, a.username, a.password, str(request.uri), self.request.method,
self.request.body, self.auth)
 if value:
 request.insert(Header(value, (a.name == 'WWW-Authenticate') and 'Authorization' or 'Proxy-Authorization'),
True)
 resend = True

When a UAC resubmits a request with its credentials after receiving a 401 (Unauthorized) or 407 (Proxy
Authentication Required) response, it MUST increment the CSeq header field value as it would normally when
sending an updated request.

 if resend:
 self.localSeq = self.localSeq + 1
 request.CSeq = Header(str(self.localSeq) + ' ' + request.method, 'CSeq')
 request.first('Via').branch = Transaction.createBranch(request, False)
 self.request = request
 self.transaction = Transaction.createClient(self.stack, self, self.request, self.transaction.transport,
self.transaction.remote)
 return True
 else:
 return False;

- 54 -

Dialog

From RFC3261 p.69 – A key concept for a user agent is that of a dialog. A dialog represents a peer-to-peer SIP
relationship between two user agents that persists for some time. The dialog facilitates sequencing of messages
between the user agents and proper routing of requests between both of them. The dialog represents a context
in which to interpret SIP messages.

Since a number of properties are shared between the UAC/UAS and the dialog context, we derive the
Dialog class from the UserAgent class.

class Dialog(UserAgent):
 @staticmethod
 def createServer(stack, request, response, transaction):
 d = Dialog(stack, request, True)
 d.request = request

The route set MUST be set to the list of URIs in the Record-Route header field from the request, taken in order
and preserving all URI parameters. If no Record-Route header field is present in the request, the route set
MUST be set to the empty set. This route set, even if empty, overrides any pre-existing route set for future
requests in this dialog. The remote target MUST be set to the URI from the Contact header field of the request.

 d.routeSet = request.all('Record-Route') if request['Record-Route'] else None
 while d.routeSet and isMulticast(d.routeSet[0].value.uri.host): # remove any multicast address from top of the list.
 if _debug: print 'deleting top multicast routeSet', d.routeSet[0]
 del d.routeSet[0]
 if len(d.routeSet) == 0: d.routeSet = None

If the request arrived over TLS, and the Request-URI contained a SIPS URI, the "secure" flag is set to TRUE.

 d.secure = request.uri.secure

The remote sequence number MUST be set to the value of the sequence number in the CSeq header field of the
request. The local sequence number MUST be empty. The call identifier component of the dialog ID MUST be
set to the value of the Call-ID in the request. The local tag component of the dialog ID MUST be set to the tag in
the To field in the response to the request (which always includes a tag), and the remote tag component of the
dialog ID MUST be set to the tag from the From field in the request. A UAS MUST be prepared to receive a
request without a tag in the From field, in which case the tag is considered to have a value of null.

 d.localSeq, d.localSeq = 0, request.CSeq.number
 d.callId = request['Call-ID'].value
 d.localTag, d.remoteTag = response.To.tag, request.From.tag

The remote URI MUST be set to the URI in the From field, and the local URI MUST be set to the URI in the To
field.

 d.localParty, d.remoteParty = Address(str(request.To.value)), Address(str(request.From.value))
 d.remoteTarget = URI(str(request.first('Contact').value.uri))
 # TODO: retransmission timer for 2xx in UAC

IMPLEMENTING SIP TELEPHONY

- 55 -

 stack.dialogs[d.id] = d
 return d

When a UAC sends a request that can establish a dialog (such as an INVITE) it MUST provide a SIP or SIPS
URI with global scope (i.e., the same SIP URI can be used in messages outside this dialog) in the Contact
header field of the request. If the request has a Request-URI or a topmost Route header field value with a SIPS
URI, the Contact header field MUST contain a SIPS URI. When a UAC receives a response that establishes a
dialog, it constructs the state of the dialog. This state MUST be maintained for the duration of the dialog.

If the request was sent over TLS, and the Request-URI contained a SIPS URI, the "secure" flag is set to TRUE.

The route set MUST be set to the list of URIs in the Record-Route header field from the response, taken in
reverse order and preserving all URI parameters. If no Record-Route header field is present in the response, the
route set MUST be set to the empty set. This route set, even if empty, overrides any pre-existing route set for
future requests in this dialog. The remote target MUST be set to the URI from the Contact header field of the
response.

The local sequence number MUST be set to the value of the sequence number in the CSeq header field of the
request. The remote sequence number MUST be empty (it is established when the remote UA sends a request
within the dialog). The call identifier component of the dialog ID MUST be set to the value of the Call-ID in the
request. The local tag component of the dialog ID MUST be set to the tag in the From field in the request, and
the remote tag component of the dialog ID MUST be set to the tag in the To field of the response. A UAC MUST
be prepared to receive a response without a tag in the To field, in which case the tag is considered to have a
value of null.

The remote URI MUST be set to the URI in the To field, and the local URI MUST be set to the URI in the From
field.

 @staticmethod
 def createClient(stack, request, response, transaction):
 d = Dialog(stack, request, False)
 d.request = request
 d.routeSet = [x for x in reversed(response.all('Record-Route'))] if response['Record-Route'] else None
 d.secure = request.uri.secure
 d.localSeq, d.remoteSeq = request.CSeq.number, 0
 d.callId = request['Call-ID'].value
 d.localTag, d.remoteTag = request.From.tag, response.To.tag
 d.localParty, d.remoteParty = Address(str(request.From.value)), Address(str(request.To.value))
 d.remoteTarget = URI(str(response.first("Contact").value.uri))
 stack.dialogs[d.id] = d
 return d

A dialog ID is also associated with all responses and with any request that contains a tag in the To field. The
rules for computing the dialog ID of a message depend on whether the SIP element is a UAC or UAS. For a
UAC, the Call-ID value of the dialog ID is set to the Call-ID of the message, the remote tag is set to the tag in the
To field of the message, and the local tag is set to the tag in the From field of the message (these rules apply to
both requests and responses). As one would expect for a UAS, the Call-ID value of the dialog ID is set to the
Call-ID of the message, the remote tag is set to the tag in the From field of the message, and the local tag is set
to the tag in the To field of the message.

The method extractId extracts the dialog identifier string from a given incoming request or response
Message.

- 56 -

 @staticmethod
 def extractId(m):
 return m['Call-ID'].value + '|' + (m.To.tag if m.method else m.From.tag) + '|' + (m.From.tag if m.method else m.To.tag)

The constructor takes the original request Message, the server flag indicating whether this is a UAS or
UAC, and the original transaction reference to create the Dialog object out of an existing UAS or
UAC.

 def __init__(self, stack, request, server, transaction=None):
 UserAgent.__init__(self, stack, request, server) # base class method
 self.servers, self.clients = [], [] # pending server and client transactions
 self._id = None
 if transaction: transaction.app = self # this is higher layer of transaction

Destroying an existing dialog is done by invoking the close method. It removes the dialog object from the
table of dialogs maintained in the stack context. TODO: we should set the stack property to None, but it
causes problem in receivedResponse method if the stack is None.

 def close(self):
 if self.stack:
 if self.id in self.stack.dialogs: del self.stack.dialogs[self.id]
 # self.stack = None

A dialog is identified at each UA with a dialog ID, which consists of a Call-ID value, a local tag and a remote tag.
The dialog ID at each UA involved in the dialog is not the same. Specifically, the local tag at one UA is identical
to the remote tag at the peer UA. The tags are opaque tokens that facilitate the generation of unique dialog IDs.

The id property refers to the dialog identifier string, which is constructed from the Call-ID, the local tag
and the remote tag parameters.

 @property
 def id(self):
 if not self._id: self._id = self.callId + '|' + self.localTag + '|' + self.remoteTag
 return self._id

From RFC3261 p.73 – A request within a dialog is constructed by using many of the components of the state
stored as part of the dialog. The tag in the To header field of the request MUST be set to the remote tag of the
dialog ID.

 def createRequest(self, method, content=None, contentType=None):
 request = UserAgent.createRequest(self, method, content, contentType)
 if self.remoteTag: request.To.tag = self.remoteTag

If the route set is empty, the UAC MUST place the remote target URI into the Request-URI. The UAC MUST
NOT add a Route header field to the request.

If the route set is not empty, and its first URI does not contain the lr parameter, the UAC MUST place the first URI
from the route set into the Request-URI, stripping any parameters that are not allowed in a Request-URI. The

IMPLEMENTING SIP TELEPHONY

- 57 -

UAC MUST add a Route header field containing the remainder of the route set values in order, including all
parameters. The UAC MUST then place the remote target URI into the Route header field as the last value.

If the route set is not empty, and the first URI in the route set contains the lr parameter (see Section 19.1.1), the
UAC MUST place the remote target URI into the Request-URI and MUST include a Route header field
containing the route set values in order, including all parameters.

 if self.routeSet and len(self.routeSet)>0 and 'lr' not in self.routeSet[0].value.uri.param: # strict route
 request.uri = self.routeSet[0].value.uri.dup()
 del request.uri.param['lr']
 return request

Once the request has been constructed, the address of the server is computed and the request is sent, using the
same procedures for requests outside of a dialog.

 def createResponse(self, response, responsetext, content=None, contentType=None):
 if len(self.servers) == 0: raise ValueError, 'No server transaction to create response'
 request = self.servers[0].request
 response = Message.createResponse(response, responsetext, None, content, request)
 if contentType: response['Content-Type'] = Header(contentType, 'Content-Type')
 if response.response != 100 and 'tag' not in response.To:
 response.To.tag = self.localTag
 return response

To send a new response in this dialog for the first pending server transaction the application invokes the
sendResponse method. The first argument can be either the response status code or a well formatted
response Message.

 def sendResponse(self, response, responsetext=None, content=None, contentType=None, createDialog=True):
 if len(self.servers) == 0: raise ValueError, 'No server transaction to send response'
 self.transaction, self.request = self.servers[0], self.servers[0].request
 UserAgent.sendResponse(self, response, responsetext, content, contentType, False)
 code = response if isinstance(response, int) else response.response
 if code >= 200:
 self.servers.pop(0) # no more pending if final response sent

 def sendCancel(self):
 if len(self.clients) == 0:
 if _debug: print 'No client transaction to send cancel'
 return
 self.transaction, self.request = self.clients[0], self.clients[0].request
 UserAgent.sendCancel(self)

 def receivedRequest(self, transaction, request):
 if self.remoteSeq != 0 and request.CSeq.number < self.remoteSeq:

- 58 -

 if _debug: print 'Dialog.receivedRequest() CSeq is old', request.CSeq.number, '<', self.remoteSeq
 self.sendResponse(500, 'Internal server error - invalid CSeq')
 return
 self.remoteSeq = request.CSeq.number

 if request.method == 'INVITE' and request.Contect:
 self.remoteTarget = request.first('Contact').value.uri.dup()

 if request.method == 'ACK' or request.method == 'CANCEL':
 self.servers = filter(lambda x: x != transaction, self.servers) # remove from pending
 if request.method == 'ACK':
 self.stack.receivedRequest(self, request)
 else:
 self.stack.cancelled(self, transaction.request)
 return

 self.servers.append(transaction) # make it pending
 self.stack.receivedRequest(self, request)

 def receivedResponse(self, transaction, response):
 '''Incoming response in a dialog.'''
 if response.is2xx and response.Contact and transaction and transaction.request.method == 'INVITE':
 self.remoteTarget = response.first('Contact').value.uri.dup()
 if not response.is1xx: # final response
 self.clients = filter(lambda x: x != transaction, self.clients) # remove from pending

 if response.response == 408 or response.response == 481: # remote doesn't recognize the dialog
 self.close()

 if response.response == 401 or response.response == 407:
 if not self.authenticate(response, transaction):
 self.stack.receivedResponse(self, response)
 elif transaction:
 self.stack.receivedResponse(self, response)

 if self.autoack and response.is2xx and (transaction and transaction.request.method == 'INVITE' or
response.CSeq.method == 'INVITE'):
 self.sendRequest(self.createRequest('ACK'))

Transaction

From RFC3261 p.122 -- SIP is a transactional protocol: interactions between components take place in a series
of independent message exchanges. Specifically, a SIP transaction consists of a single request and any
responses to that request, which include zero or more provisional responses and one or more final responses.

IMPLEMENTING SIP TELEPHONY

- 59 -

Transactions have a client side and a server side. The client side is known as a client transaction and the server
side as a server transaction. The client transaction sends the request, and the server transaction sends the
response. The client and server transactions are logical functions that are embedded in any number of elements.
Specifically, they exist within user agents and stateful proxy servers.

The purpose of the client transaction is to receive a request from the element in which the client is embedded
(call this element the "Transaction User" or TU; it can be a UA or a stateful proxy), and reliably deliver the request
to a server transaction. The client transaction is also responsible for receiving responses and delivering them to
the TU, filtering out any response retransmissions or disallowed responses (such as a response to ACK).

Similarly, the purpose of the server transaction is to receive requests from the transport layer and deliver them to
the TU. The server transaction filters any request retransmissions from the network. The server transaction
accepts responses from the TU and delivers them to the transport layer for transmission over the network.

We define a class Transaction to represent a SIP transaction. This is an abstract class. The actual
implementations of client and server transactions are done in ClientTransaction and
ServerTransaction classes, respectively. These classes are used for non-INVITE transaction. SIP
defines different processing for INVITE and non-INVITE transactions. The INVITE transactions are
implemented using InviteClientTransaction and InviteServerTransaction classes. The
transaction user (or TU) in our implementation is UserAgent object (or the derived Dialog object).

Transaction properties

Let’s start by defining the transaction object properties. A transaction is identified by an identifier, id. The
transaction identifier is usually derived from the branch parameter of the top-most Via header. Thus, we
store the branch property as well. Each transaction has an original SIP request from which the
transaction was created. The associated transport information and the remote host-port tuple give
information about where to send a request or response in a transaction. We store the tag supplied by the TU
for a server transaction. The server Boolean flag indicates whether this is a client (False) or server (True)
transaction. The transaction module may need to use the functions from the Stack object referred by the
stack property. A reference to the transaction user (TU) is stored in the app property. Finally, the
transaction has collection of active timers as well as timer duration values for different type of timers as
defined in the specification.

class Transaction(object):
 def __init__(self, server):
 self.branch = self.id = self.stack = self.app = self.request = self.transport = self.remote = self.tag = None
 self.server, self.timers, self.timer = server, {}, Timer()

When a transaction is closed, we stop all the timers and remove this transaction instance from the collection
of transactions maintained by the Stack. As described earlier, the stack object maintains a table of all
the transactions indexed by the transaction identifier string.

 def close(self):
 self.stopTimers()
 if self.stack:
 if self.id in self.stack.transactions: del self.stack.transactions[self.id]

Note that we couldn’t use the destructor method, because as long as a reference to this transaction is stored in
the transactions table, the destructor will not get invoked. Hence we need an explicit close method to
destroy the transaction. The close method gets invoked whenever the transaction state is changed to

- 60 -

“terminating”. Thus we define another property, state, to maintain the transaction state and explicitly
invoke close when the state changes to “terminating”.

From RFC3261 – The client transaction MUST be destroyed the instant it enters the "Terminated" state. This is
actually necessary to guarantee correct operation.

Once the transaction is in the "Terminated" state, it MUST be destroyed immediately. As with client transactions,
this is needed to ensure reliability of the 2xx responses to INVITE.

 def state():
 def fset(self, value):
 self._state = value
 if self._state == 'terminating': self.close() # automatically close when state goes terminating
 def fget(self): return self._state
 return locals()
 state = property(**state())

SIP defines four headers – To, From, CSeq, Call-ID – as transaction identifying headers. The values of
these header fields remains the same within a transaction, although the header parameters may change – e.g.,
the tag parameter gets added to the To header. We define a read-only property, headers, which gives a
list of these four headers.

 @property
 def headers(self):
 return map(lambda x: self.request[x], ['To', 'From', 'CSeq', 'Call-ID'])

Creating branch and transaction identifiers

SIP imposes certain restrictions on creation of branch parameter. In particular, the RFC3261 compliant
implementation must start the branch parameter with “z9hG4bK” to distinguish against previous RFC2543
implementations. In practice, an implementation must choose the branch parameter carefully, so that it can be
used to match a transaction, i.e., act as a transaction identifier. Most of the implementations that I have seen
use some combination of transaction headers to create the branch parameter.

From RFC3261 p.29 – The Via header field value MUST contain a branch parameter. This parameter is used to
identify the transaction created by that request. This parameter is used by both the client and the server.

The branch ID inserted by an element compliant with this specification MUST always begin with the characters
"z9hG4bK". These 7 characters are used as a magic cookie (7 is deemed sufficient to ensure that an older RFC
2543 implementation would not pick such a value), so that servers receiving the request can determine that the
branch ID was constructed in the fashion described by this specification (that is, globally unique). Beyond this
requirement, the precise format of the branch token is implementation-defined.

The function createBranch defined below uses the information from the transaction identifying headers,
along with the server flag. The server flag is needed so that a client transaction doesn’t interfere with a
server transaction while searching for a transaction in the transactions table. Note that we only use the header
value of To and From without the parameters, and the number field from CSeq header without the
method name. This is important so that a response with tag parameter in the To header gets matched with
the original transaction that didn’t have the tag parameter in the To header. Secondly, the branch
parameter for the CANCEL and ACK request remains the same as that of the original INVITE if we don’t
include the method of CSeq header in computing the branch. Finally we use a one-way hash such as
MD5 and modified Base64 encoding to construct a random-looking branch parameter from the assembled

IMPLEMENTING SIP TELEPHONY

- 61 -

data. The modified Base64 encoding is needed because certain characters in the original Base64 grammar are
not allowed in the branch grammar by the specification.

from hashlib import md5
from base64 import urlsafe_b64encode
…
 @staticmethod
 def createBranch(request, server):
 '''Static method to create a branch parameter from request (Message) and server (Boolean)
 or using [To, From, Call-ID, CSeq-number(int)] and server (Boolean).'''
 To, From, CallId, CSeq = (request.To.value, request.From.value, request['Call-ID'].value, request.CSeq.number) if
isinstance(request, Message) else (request[0], request[1], request[2], request[3])
 data = str(To).lower() + '|' + str(From).lower() + '|' + str(CallId) + '|' + str(CSeq) + '|' + str(server)
 return 'z9hG4bK' + str(urlsafe_b64encode(md5(data).digest())).replace('=','.')

For added flexibility, we allow overloaded method invocation where the first argument can be either a
Message object or a list of the individual fields needed for computing the branch.

Transaction.createBranch(request, True) # create a branch from request for a server transaction
Transaction.createBranch([m.To.value, m.From.value, m[‘Call-ID’].value, m.CSeq.number], False) # use individual fields

The branch parameter value MUST be unique across space and time for all requests sent by the UA. The
exceptions to this rule are CANCEL and ACK for non-2xx responses. A CANCEL request will have the same
value of the branch parameter as the request it cancels. An ACK for a non-2xx response will also have the same
branch ID as the INVITE whose response it acknowledges.

The uniqueness property of the branch parameter allows us to use it as the transaction identifier, with a
couple of exception – if the method is either CANCEL or ACK, then even though the branch parameter is
same as the original INVITE request, the transaction identifier should be different. We define the
createId method to construct such a transaction identifier, which appends the method name if the method
is ACK or CANCEL. The transaction identifier is used as a key in our lookup table of transactions.

 @staticmethod
 def createId(branch, method):
 return branch if method != 'ACK' and method != 'CANCEL' else branch + '|' + method

Creating a transaction

The TU wishes to create a new server transaction it invokes the createServer factory method by
supplying the incoming request Message, the associated transport information on which the request was
received and the application tag parameter to use in the transaction response. The method hides the
implementation details of what type of object is used for the particular transaction, e.g., whether INVITE or
non-INVITE transactions use separate implementations.

 @staticmethod

- 62 -

 def createServer(stack, app, request, transport, tag):
 t = request.method == 'INVITE' and InviteServerTransaction() or ServerTransaction()
 t.stack, t.app, t.request, t.transport, t.tag = stack, app, request, transport, tag

For a server transaction, certain transaction properties are derived from the incoming message, e.g., the
branch and remote address property are extracted from the top-most Via header. If a branch
parameter is missing in the request, probably due to old implementation of the specification, then the
branch parameter is constructed using the request message as described earlier.

 t.remote = request.first('Via').viaUri.hostPort
 t.branch = request.first('Via').branch if request.Via != None and 'branch' in request.first('Via') else
Transaction.createBranch(request, True)

Finally, the transaction identifier is created, the transaction is stored in the transactions table, the transaction
state machine is started, and the transaction object is returned as the newly created server transaction.

 t.id = Transaction.createId(t.branch, request.method)
 stack.transactions[t.id] = t
 t.start()
 return t

From RFC3261 – The TU communicates with the client transaction through a simple interface. When the TU
wishes to initiate a new transaction, it creates a client transaction and passes it the SIP request to send and an IP
address, port, and transport to which to send it. The client transaction begins execution of its state machine.
Valid responses are passed up to the TU from the client transaction.

There are two types of client transaction state machines, depending on the method of the request passed by the
TU. One handles client transactions for INVITE requests. This type of machine is referred to as an INVITE client
transaction. Another type handles client transactions for all requests except INVITE and ACK. This is referred to
as a non-INVITE client transaction.

When the TU wishes to create a client transaction for sending out a new request, it uses the
createClient method and supplies the request Message, the associated transport which will be used to
send the request and the remote host-port tuple to which we want to send the request to. Similar to the
creation of server transaction, this method also hides the implementation details of the type of transaction
object created. The rest of the processing is very similar to the previous method.

 @staticmethod
 def createClient(stack, app, request, transport, remote):
 t = request.method == 'INVITE' and InviteClientTransaction() or ClientTransaction()
 t.stack, t.app, t.request, t.remote, t.transport = stack, app, request, remote, transport
 t.branch = request.first('Via').branch if request.Via != None and 'branch' in request.first('Via') else
Transaction.createBranch(request, False)
 t.id = Transaction.createId(t.branch, request.method)
 stack.transactions[t.id] = t
 t.start()

IMPLEMENTING SIP TELEPHONY

- 63 -

 return t

Comparing a request against a transaction

The equals method on the transaction is used by the Stack.findOtherTransaction method to
check whether a request r matches an existing transaction t1, such that transaction t1 is different from
original transaction t2, but has the same direction (client or server) as the original transaction t2. When an
incoming request matches another transaction (t1) even though the request is part of another original
transaction (t2), we have a request merging situation, hence the request should get rejected.

 @staticmethod
 def equals(t1, r, t2):
 t = t1.request
 a = r.To.value.uri == t.To.value.uri
 a = a and (r.From.value.uri == t.From.value.uri)
 a = a and (r['Call-ID'].value == t['Call-ID'].value)
 a = a and (r.CSeq.value == t.CSeq.value)
 a = a and (r.From.tag == t.From.tag)
 a = a and (t2.server == t1.server)
 return a

Creating ACK, CANCEL and responses

To create an ACK request in a client transaction, we use the original request URI of the transaction with
transaction identifying headers. The method returns None for server transaction.

 def createAck(self):
 return Message.createRequest('ACK', str(self.request.uri), self.headers) if self.request and not self.server else None

To create a CANCEL request in a client transaction, we again use the original request URI of the transaction
with transaction identifying headers. Additionally, for a CANCEL request the Route header is copied from
the original request if needed, and only one Via header, i.e., top-most one, is kept in the request. The method
returns None for server transaction.

 def createCancel(self):
 m = Message.createRequest('CANCEL', str(self.request.uri), self.headers) if self.request and not self.server else
None
 if m and self.request.Route: m.Route = self.request.Route
 if m: m.Via = self.request.first('Via') # only top Via included
 return m

To create a response in a server transaction, we use the original request and add the response status code
(response) and reason phrase (responsetext). If the response is not “100 Trying” then we also add

- 64 -

the tag parameter in the To header if one is missing. TODO: this should be moved to UAS? The method
returns None for client transaction.

 def createResponse(self, response, responsetext):
 m = Message.createResponse(response, responsetext, None, None, self.request) if self.request and self.server else
None
 if response != 100 and 'tag' not in m.To: m.To['tag'] = self.tag
 return m

Transaction timers

In the transaction state machine, several timers exist. The startTimer method is used to start a new
named timer for the given timeout duration. To create a timer if it doesn’t already exist in this transaction, we
invoke the application callback createTimer.

 def startTimer(self, name, timeout):
 if timeout > 0:
 if name in self.timers:
 timer = self.timers[name]
 else:
 timer = self.timers[name] = self.stack.createTimer(self)
 timer.delay = timeout
 timer.start()

When the timer expires, we invoke the timeout handler method which is implemented for individual
transaction state machines. The timedout method is invoked by the actual timer implementation of the
application, the one that was returned in createTimer.

 def timedout(self, timer):
 if timer.running: timer.stop()
 found = filter(lambda x: self.timers[x] == timer, self.timers.keys())
 if len(found):
 for f in found: del self.timers[f]
 self.timeout(found[0], timer.delay)

When cleaning up a transaction, we may need to stop all the timers associated with this transaction. The
stopTimers method can be used for that purpose.

 def stopTimers(self):
 for v in self.timers.values(): v.stop()
 del self.timers

IMPLEMENTING SIP TELEPHONY

- 65 -

Timers

RFC3261 defines several timers which we abstract out in our implementation of the Timer class. In
particular, the named timers T1, T2 and T4 configure the timeout values of all other timers, timer A to K. The
default values of T1, T2 and T4 times are 500, 4000 and 5000 milliseconds. If a different default value is
needed then the transaction can create the Timer object with those different values during construction.

class Timer(object):
 def __init__(self, T1=500, T2=4000, T4=5000):
 self.T1, self.T2, self.T4 = T1, T2, T4

Timer A’s value is initially same as T1, and gets updated every time the timer expires.

 def A(self): return self.T1

Timer B’s value is 64×T1.

 def B(self): return 64*self.T1

TODO: why no timer C?

Timer D’s value is also similar to timer B, except that it caps at 32 seconds.

 def D(self): return max(64*self.T1, 32000)

Timer I’s value is same as that of timer T4.

 def I(self): return self.T4

Finally we turn these derived timer values into read-only properties, such that initial values of timers A, E, G
are all same, timers B, F, H, J are all same, and timers I and K are same.

 A, B, D, E, F, G, H, I, J, K = map(lambda x: property(x), [A, B, D, A, B, A, B, I, B, I])

INVITE client transaction

From RFC3261 p.125 – The INVITE transaction consists of a three-way handshake. The client transaction
sends an INVITE, the server transaction sends responses, and the client transaction sends an ACK. For
unreliable transports (such as UDP), the client transaction retransmits requests at an interval that starts at T1
seconds and doubles after every retransmission. T1 is an estimate of the round-trip time (RTT), and it defaults to
500 ms. Nearly all of the transaction timers described here scale with T1, and changing T1 adjusts their values.
The request is not retransmitted over reliable transports. After receiving a 1xx response, any retransmissions
cease altogether, and the client waits for further responses. The server transaction can send additional 1xx

- 66 -

responses, which are not transmitted reliably by the server transaction. Eventually, the server transaction
decides to send a final response. For unreliable transports, that response is retransmitted periodically, and for
reliable transports, it is sent once. For each final response that is received at the client transaction, the client
transaction sends an ACK, the purpose of which is to quench retransmissions of the response.

class InviteClientTransaction(Transaction):
 def __init__(self):
 Transaction.__init__(self, False)

The initial state, "calling", MUST be entered when the TU initiates a new client transaction with an INVITE
request. The client transaction MUST pass the request to the transport layer for transmission (see Section 18). If
an unreliable transport is being used, the client transaction MUST start timer A with a value of T1. If a reliable
transport is being used, the client transaction SHOULD NOT start timer A (Timer A controls request
retransmissions). For any transport, the client transaction MUST start timer B with a value of 64*T1 seconds
(Timer B controls transaction timeouts).

 def start(self):
 self.state = 'calling'
 if not self.transport.reliable:
 self.startTimer('A', self.timer.A)
 self.startTimer('B', self.timer.B)
 self.stack.send(self.request, self.remote, self.transport)

If the client transaction receives a provisional response while in the "Calling" state, it transitions to the
"Proceeding" state. In the "Proceeding" state, the client transaction SHOULD NOT retransmit the request any
longer. Furthermore, the provisional response MUST be passed to the TU. Any further provisional responses
MUST be passed up to the TU while in the "Proceeding" state.

 def receivedResponse(self, response):
 if response.is1xx:
 if self.state == 'calling':
 self.state = 'proceeding'
 self.app.receivedResponse(self, response)
 elif self.state == 'proceeding':
 self.app.receivedResponse(self, response)

When in either the "Calling" or "Proceeding" states, reception of a 2xx response MUST cause the client
transaction to enter the "Terminated" state, and the response MUST be passed up to the TU. The handling of this
response depends on whether the TU is a proxy core or a UAC core. A UAC core will handle generation of the
ACK for this response, while a proxy core will always forward the 200 (OK) upstream. The differing treatment of
200 (OK) between proxy and UAC is the reason that handling of it does not take place in the transaction layer.

 elif response.is2xx:
 if self.state == 'calling' or self.state == 'proceeding':
 self.state = 'terminated'
 self.app.receivedResponse(self, response)

IMPLEMENTING SIP TELEPHONY

- 67 -

When in either the "Calling" or "Proceeding" states, reception of a response with status code from 300-699 MUST
cause the client transaction to transition to "Completed". The client transaction MUST pass the received
response up to the TU, and the client transaction MUST generate an ACK request, even if the transport is reliable
(guidelines for constructing the ACK from the response are given in Section 17.1.1.3) and then pass the ACK to
the transport layer for transmission. The ACK MUST be sent to the same address, port, and transport to which
the original request was sent. The client transaction SHOULD start timer D when it enters the "Completed" state,
with a value of at least 32 seconds for unreliable transports, and a value of zero seconds for reliable transports.
Timer D reflects the amount of time that the server transaction can remain in the "Completed" state when
unreliable transports are used. This is equal to Timer H in the INVITE server transaction, whose default is 64*T1.
However, the client transaction does not know the value of T1 in use by the server transaction, so an absolute
minimum of 32s is used instead of basing Timer D on T1.

 else: # failure
 if self.state == 'calling' or self.state == 'proceeding':
 self.state = 'completed'
 self.stack.send(self.createAck(response), self.remote, self.transport)
 self.app.receivedResponse(self, response)
 if not self.transport.reliable:
 self.startTimer('D', self.timer.D)
 else:
 self.timeout('D', 0)

Any retransmissions of the final response that are received while in the "Completed" state MUST cause the ACK
to be re-passed to the transport layer for retransmission, but the newly received response MUST NOT be passed
up to the TU.

 elif self.state == 'completed':
 self.stack.send(self.createAck(response), self.remote, self.transport)

When timer A fires, the client transaction MUST retransmit the request by passing it to the transport layer, and
MUST reset the timer with a value of 2*T1. The formal definition of retransmit within the context of the transaction
layer is to take the message previously sent to the transport layer and pass it to the transport layer once more.

When timer A fires 2*T1 seconds later, the request MUST be retransmitted again (assuming the client transaction
is still in this state). This process MUST continue so that the request is retransmitted with intervals that double
after each transmission. These retransmissions SHOULD only be done while the client transaction is in the
"calling" state.

 def timeout(self, name, timeout):
 if self.state == 'calling':
 if name == 'A':
 self.startTimer('A', 2*timeout)
 self.stack.send(self.request, self.remote, self.transport)

If the client transaction is still in the "Calling" state when timer B fires, the client transaction SHOULD inform the
TU that a timeout has occurred. The client transaction MUST NOT generate an ACK. The value of 64*T1 is
equal to the amount of time required to send seven requests in the case of an unreliable transport.

 elif name == 'B':

- 68 -

 self.state = 'terminated'
 self.app.timeout(self)

If timer D fires while the client transaction is in the "Completed" state, the client transaction MUST move to the
terminated state.

 elif self.state == 'completed':
 if name == 'D':
 self.state = 'terminated'

Any transport error causes the state machine to move to the “terminated” state and updates the TU with the
error message.

 def error(self, error):
 if self.state == 'calling' or self.state == 'completed':
 self.state = 'terminated'
 self.app.error(self, error)

The ACK request constructed by the client transaction MUST contain values for the Call-ID, From, and Request-
URI that are equal to the values of those header fields in the request passed to the transport by the client
transaction (call this the "original request").

 def createAck(self, response):
 if not self.request: raise ValueError, 'No transaction request found'
 m = Message.createRequest('ACK', str(self.request.uri))
 m['Call-ID'] = self.request['Call-ID']
 m.From = self.request.From

The To header field in the ACK MUST equal the To header field in the response being acknowledged, and
therefore will usually differ from the To header field in the original request by the addition of the tag parameter.

 m.To = response.To if response else self.request.To

The ACK MUST contain a single Via header field, and this MUST be equal to the top Via header field of the
original request.

 m.Via = self.request.first("Via") # only top Via

The CSeq header field in the ACK MUST contain the same value for the sequence number as was present in the
original request, but the method parameter MUST be equal to "ACK".

 m.CSeq = Header(str(self.request.CSeq.number) + ' ACK', 'CSeq')

IMPLEMENTING SIP TELEPHONY

- 69 -

If the INVITE request whose response is being acknowledged had Route header fields, those header fields
MUST appear in the ACK. This is to ensure that the ACK can be routed properly through any downstream
stateless proxies.

 if self.request.Route: m.Route = self.request.Route
 return m;

INVITE server transaction

When a server transaction is constructed for a request, it enters the "Proceeding" state. The server transaction
MUST generate a 100 (Trying) response unless it knows that the TU will generate a provisional or final response
within 200 ms, in which case it MAY generate a 100 (Trying) response. This provisional response is needed to
quench request retransmissions rapidly in order to avoid network congestion. The request MUST be passed to
the TU.

class InviteServerTransaction(Transaction):
 def __init__(self):
 Transaction.__init__(self, True)
 def start(self):
 self.state = 'proceeding'
 self.sendResponse(self.createResponse(100, 'Trying'))
 self.app.receivedRequest(self, self.request)

Furthermore, while in the "Completed" state, if a request retransmission is received, the server SHOULD pass
the response to the transport for retransmission.

 def receivedRequest(self, request):
 if self.request.method == request.method: # retransmitted
 if self.state == 'proceeding' or self.state == 'completed':
 self.stack.send(self.lastResponse, self.remote, self.transport)

If an ACK is received while the server transaction is in the "Completed" state, the server transaction MUST
transition to the "Confirmed" state. As Timer G is ignored in this state, any retransmissions of the response will
cease.

The purpose of the "Confirmed" state is to absorb any additional ACK messages that arrive, triggered from
retransmissions of the final response. When this state is entered, timer I is set to fire in T4 seconds for unreliable
transports, and zero seconds for reliable transports.

 elif request.method == 'ACK':
 if self.state == 'completed':
 self.state = 'confirmed'
 if not self.transport.reliable:
 self.startTimer('I', self.timer.I)
 else:
 self.timeout('I', 0)
 elif self.state == 'confirmed':

- 70 -

 pass # ignore the retransmitted ACK

If timer G fires, the response is passed to the transport layer once more for retransmission, and timer G is set to
fire in MIN(2*T1, T2) seconds. From then on, when timer G fires, the response is passed to the transport again
for transmission, and timer G is reset with a value that doubles, unless that value exceeds T2, in which case it is
reset with the value of T2.

 def timeout(self, name, timeout):
 if self.state == 'completed':
 if name == 'G':
 self.startTimer('G', min(2*timeout, self.timer.T2))
 self.stack.send(self.lastResponse, self.remote, self.transport)

If timer H fires while in the "Completed" state, it implies that the ACK was never received. In this case, the server
transaction MUST transition to the "Terminated" state, and MUST indicate to the TU that a transaction failure has
occurred.

 elif name == 'H':
 self.state = 'terminated'
 self.app.timeout(self)

Once timer I fires, the server MUST transition to the "Terminated" state.

 elif self.state == 'confirmed':
 if name == 'I':
 self.state = 'terminated'

As with the client transaction, any transport error is treated as error and propagated to the TU.

 def error(self, error):
 if self.state == 'proceeding' or self.state == 'confirmed':
 self.state = 'terminated'
 self.app.error(self, error)

The TU passes any number of provisional responses to the server transaction. So long as the server transaction
is in the "Proceeding" state, each of these MUST be passed to the transport layer for transmission. They are not
sent reliably by the transaction layer (they are not retransmitted by it) and do not cause a change in the state of
the server transaction. If a request retransmission is received while in the "Proceeding" state, the most recent
provisional response that was received from the TU MUST be passed to the transport layer for retransmission.

 def sendResponse(self, response):
 self.lastResponse = response
 if response.is1xx:
 if self.state == 'proceeding':
 self.stack.send(response, self.remote, self.transport)

IMPLEMENTING SIP TELEPHONY

- 71 -

If, while in the "Proceeding" state, the TU passes a 2xx response to the server transaction, the server transaction
MUST pass this response to the transport layer for transmission. It is not retransmitted by the server transaction;
retransmissions of 2xx responses are handled by the TU. The server transaction MUST then transition to the
"Terminated" state.

 elif response.is2xx:
 if self.state == 'proceeding':
 self.state = 'terminated'
 self.stack.send(response, self.remote, self.transport)

While in the "Proceeding" state, if the TU passes a response with status code from 300 to 699 to the server
transaction, the response MUST be passed to the transport layer for transmission, and the state machine MUST
enter the "Completed" state. For unreliable transports, timer G is set to fire in T1 seconds, and is not set to fire for
reliable transports.

 else: # failure
 if self.state == 'proceeding':
 self.state = 'completed'
 if not self.transport.reliable:
 self.startTimer('G', self.timer.G)

When the "Completed" state is entered, timer H MUST be set to fire in 64*T1 seconds for all transports. Timer H
determines when the server transaction abandons retransmitting the response. Its value is chosen to equal
Timer B, the amount of time a client transaction will continue to retry sending a request.

 self.startTimer('H', self.timer.H)
 self.stack.send(response, self.remote, self.transport)

Non-INVITE client transaction

From RFC3261 p.130 – Non-INVITE transactions do not make use of ACK. They are simple request-response
interactions. For unreliable transports, requests are retransmitted at an interval which starts at T1 and doubles
until it hits T2. If a provisional response is received, retransmissions continue for unreliable transports, but at an
interval of T2. The server transaction retransmits the last response it sent, which can be a provisional or final
response, only when a retransmission of the request is received. This is why request retransmissions need to
continue even after a provisional response; they are to ensure reliable delivery of the final response. Unlike an
INVITE transaction, a non-INVITE transaction has no special handling for the 2xx response. The result is that
only a single 2xx response to a non-INVITE is ever delivered to a UAC.

class ClientTransaction(Transaction):
 def __init__(self):
 Transaction.__init__(self, False)

The "Trying" state is entered when the TU initiates a new client transaction with a request. When entering this
state, the client transaction SHOULD set timer F to fire in 64*T1 seconds. The request MUST be passed to the

- 72 -

transport layer for transmission. If an unreliable transport is in use, the client transaction MUST set timer E to fire
in T1 seconds.

 def start(self):
 self.state = 'trying'
 if not self.transport.reliable:
 self.startTimer('E', self.timer.E)
 self.startTimer('F', self.timer.F)
 self.stack.send(self.request, self.remote, self.transport)

If a provisional response is received while in the "Trying" state, the response MUST be passed to the TU, and
then the client transaction SHOULD move to the "Proceeding" state.

 def receivedResponse(self, response):
 if response.is1xx:
 if self.state == 'trying':
 self.state = 'proceeding'
 self.app.receivedResponse(self, response)
 elif self.state == 'proceeding':
 self.app.receivedResponse(self, response)

If a final response (status codes 200-699) is received while in the "Trying" state, the response MUST be passed
to the TU, and the client transaction MUST transition to the "Completed" state.

If a final response (status codes 200-699) is received while in the "Proceeding" state, the response MUST be
passed to the TU, and the client transaction MUST transition to the "Completed" state.

 elif response.isfinal:
 if self.state == 'trying' or self.state == 'proceeding':
 self.state = 'completed'
 self.app.receivedResponse(self, response)

Once the client transaction enters the "Completed" state, it MUST set Timer K to fire in T4 seconds for unreliable
transports, and zero seconds for reliable transports.

 if not self.transport.reliable:
 self.startTimer('K', self.timer.K)
 else:
 self.timeout('K', 0)

If timer E fires while still in this state, the timer is reset, but this time with a value of MIN(2*T1, T2). When the timer
fires again, it is reset to a MIN(4*T1, T2). This process continues so that retransmissions occur with an
exponentially increasing interval that caps at T2. The default value of T2 is 4s, and it represents the amount of
time a non-INVITE server transaction will take to respond to a request, if it does not respond immediately. For
the default values of T1 and T2, this results in intervals of 500 ms, 1 s, 2 s, 4 s, 4 s, 4 s, etc.

If Timer E fires while in the "Proceeding" state, the request MUST be passed to the transport layer for
retransmission, and Timer E MUST be reset with a value of T2 seconds.

IMPLEMENTING SIP TELEPHONY

- 73 -

 def timeout(self, name, timeout):
 if self.state == 'trying' or self.state == 'proceeding':
 if name == 'E':
 timeout = min(2*timeout, self.timer.T2) if self.state == 'trying' else self.timer.T2
 self.startTimer('E', timeout)
 self.stack.send(self.request, self.remote, self.transport)

If Timer F fires while the client transaction is still in the "Trying" state, the client transaction SHOULD inform the
TU about the timeout, and then it SHOULD enter the "Terminated" state.

If timer F fires while in the "Proceeding" state, the TU MUST be informed of a timeout, and the client transaction
MUST transition to the terminated state.

 elif name == 'F':
 self.state = 'terminated'
 self.app.timeout(self)

If Timer K fires while in this (“completed”) state, the client transaction MUST transition to the "Terminated" state.

 elif self.state == 'completed':
 if name == 'K':
 self.state = 'terminated'

The client transaction SHOULD inform the TU that a transport failure has occurred, and the client transaction
SHOULD transition directly to the "Terminated" state.

 def error(self, error):
 if self.state == 'trying' or self.state == 'proceeding':
 self.state = 'terminated'
 self.app.error(self, error)

Non-INVITE server transaction

From RFC3261 p.137 – The state machine is initialized in the "Trying" state and is passed a request other than
INVITE or ACK when initialized. This request is passed up to the TU.

class ServerTransaction(Transaction):
 def __init__(self):
 Transaction.__init__(self, True)
 def start(self):
 self.state = 'trying'
 self.app.receivedRequest(self, self.request)

If a retransmission of the request is received while in the "Proceeding" state, the most recently sent provisional
response MUST be passed to the transport layer for retransmission.

- 74 -

While in the "Completed" state, the server transaction MUST pass the final response to the transport layer for
retransmission whenever a retransmission of the request is received.

 def receivedRequest(self, request):
 if self.request.method == request.method: # retransmitted
 if self.state == 'proceeding' or self.state == 'completed':
 self.stack.send(self.lastResponse, self.remote, self.transport)

Once in the "Trying" state, any further request retransmissions are discarded.

 elif self.state == 'trying':
 pass # just ignore the retransmitted request

The server transaction remains in this state until Timer J fires, at which point it MUST transition to the
"Terminated" state.

 def timeout(self, name, timeout):
 if self.state == 'completed':
 if name == 'J':
 self.state = 'terminated'

As with the client transaction, a transport error is propagated up the TU and the state transitions to
“terminated”.

 def error(self, error):
 if self.state == 'completed':
 self.state = 'terminated'
 self.app.error(self, error)

While in the "Trying" state, if the TU passes a provisional response to the server transaction, the server
transaction MUST enter the "Proceeding" state. The response MUST be passed to the transport layer for
transmission. Any further provisional responses that are received from the TU while in the "Proceeding" state
MUST be passed to the transport layer for transmission.

 def sendResponse(self, response):
 self.lastResponse = response;
 if response.is1xx:
 if self.state == 'trying' or self.state == 'proceedings':
 self.state = 'proceeding'
 self.stack.send(response, self.remote, self.transport)

If the TU passes a final response (status codes 200-699) to the server while in the "Proceeding" state, the
transaction MUST enter the "Completed" state, and the response MUST be passed to the transport layer for
transmission.

Any other final responses passed by the TU to the server transaction MUST be discarded while in the
"Completed" state.

 elif response.isfinal:

IMPLEMENTING SIP TELEPHONY

- 75 -

 if self.state == 'proceeding' or self.state == 'trying':
 self.state = 'completed'
 self.stack.send(response, self.remote, self.transport)

When the server transaction enters the "Completed" state, it MUST set Timer J to fire in 64*T1 seconds for
unreliable transports, and zero seconds for reliable transports.

 if not self.transport.reliable:
 self.startTimer('J', self.timer.J)
 else:
 self.timeout('J', 0)

Session description
Implementing offer-answer and SDP as per RFC 3264, RFC 4566

The Session Description Protocol (SDP) is specified in RFC 4566 and defines the format for describing the
session parameters in a SIP session. In particular, the SIP INVITE request and the 2xx-class response to the
INVITE request can contain the message body in SDP format. The SDP data advertises the media types, list
of codecs and transport addresses for the sender. Secondly, RFC 3264 defines how a SIP user agent can offer
and answer the session negotiation parameters with the help of SDP. In particular, it adds additional
constraints on the base SDP for usage in a SIP telephony environment.

In this chapter we implement the modules named rfc4566 and rfc3264 to implement these session
description and negotiation functions for SIP telephony.

Session Description Protocol (SDP)

From RFC4566 p.3 – When initiating multimedia teleconferences, voice-over-IP calls, streaming video, or other
sessions, there is a requirement to convey media details, transport addresses, and other session description
metadata to the participants.

SDP provides a standard representation for such information, irrespective of how that information is transported.
SDP is purely a format for session description -- it does not incorporate a transport protocol, and it is intended to
use different transport protocols as appropriate, including the Session Announcement Protocol, Session Initiation
Protocol, Real Time Streaming Protocol, electronic mail using the MIME extensions, and the Hypertext Transport
Protocol.

SDP is intended to be general purpose so that it can be used in a wide range of network environments and
applications. However, it is not intended to support negotiation of session content or media encodings: this is
viewed as outside the scope of session description.

SDP is also used in conjunction with other protocols such as Session Announcement Protocol (SAP) and
Real Time Streaming Protocol (RTSP), but those are beyond the scope of current discussion.

From RFC4566 p.7 – An SDP session description is entirely textual using the ISO 10646 character set in UTF-8
encoding. SDP field names and attribute names use only the US-ASCII subset of UTF-8, but textual fields and
attribute values MAY use the full ISO 10646 character set. Field and attribute values that use the full UTF-8
character set are never directly compared, hence there is no requirement for UTF-8 normalisation. The textual
form, as opposed to a binary encoding such as ASN.1 or XDR, was chosen to enhance portability, to enable a
variety of transports to be used, and to allow flexible, text-based toolkits to be used to generate and process
session descriptions.

Usage

Before we jump into the implementation, let’s understand the basic usage of the module rfc4566. We will
define a class named SDP to represent an SDP packet. SDP is a text-based protocol. An example SDP
description from RFC4566 p.10 is shown below:

 v=0
 o=jdoe 2890844526 2890842807 IN IP4 10.47.16.5
 s=SDP Seminar
 i=A Seminar on the session description protocol
 u=http://www.example.com/seminars/sdp.pdf

IMPLEMENTING SIP TELEPHONY

- 77 -

 e=j.doe@example.com (Jane Doe)
 c=IN IP4 224.2.17.12/127
 t=2873397496 2873404696
 a=recvonly
 m=audio 49170 RTP/AVP 0
 m=video 51372 RTP/AVP 99
 a=rtpmap:99 h263-1998/90000

To implement the SDP class we first need to define how we intend to use the class. An object with dynamic
properties that can be assessed either as attribute or container access forms a good programming interface.

>>> s = SDP(“v=0\r\no=jdoe 2890844526 2890842807 IN IP4 10.47.16.5\r\ns=-\r\nc=IN IP4 224.2.17.12/127”)
>>> s.i = “A Seminar on the session description protocol”
>>> s[s] = “SDP Seminar”
>>> print s.c.address, s.c.ttl
224.2.17.12 127
>>> print s.t == None
True

Container and attribute access

We define the attrs class that implements such an attribute plus container interface for accessing the
various headers in the SDP. Unlike the attribute access on a regular Python object, an attrs object returns
None for a missing element instead of throwing an error. This helps the programmer in writing clean source
code.

class attrs(object):
 def __init__(self, **kwargs):
 for n,v in kwargs.items(): self[n] = v
 def __getattr__(self, name): return self.__getitem__(name)
 def __getitem__(self, name): return self.__dict__.get(name, None)
 def __setitem__(self, name, value): self.__dict__[name] = value
 def __contains__(self, name): return name in self.__dict__

Then we derive the SDP class from this attrs class to extend the additional specific attributes such as
connection line.

class SDP(attrs):
 _multiple = 'tramb' # header names that can appear multiple times.
 def __init__(self, value=None):
 if value: self._parse(value)

Certain attributes such as “t=”, “r=”, etc. can appear multiple times in SDP and need to be identified
separately as done by the _multiple property of the SDP class.

- 78 -

From RFC4566 p.8 – Some lines in each description are REQUIRED and some are OPTIONAL, but all MUST
appear in exactly the order given here (the fixed order greatly enhances error detection and allows for a simple
parser).

Before defining the parsing of the full SDP data, let’s define the individual specific headers that can be
represented using more than just a string.

Origin data

From RFC4566 p.11 – Origin (o=)

 o=<username> <sess-id> <sess-version> <nettype> <addrtype> <unicast-address>

The "o=" field gives the originator of the session (her username and the address of the user's host) plus a session
identifier and version number:

<username> is the user's login on the originating host, or it is "-" if the originating host does not support the
concept of user IDs. The <username> MUST NOT contain spaces.

<sess-id> is a numeric string such that the tuple of <username>, <sess-id>, <nettype>, <addrtype>, and
<unicast-address> forms a globally unique identifier for the session. The method of <sess-id> allocation is up to
the creating tool, but it has been suggested that a Network Time Protocol (NTP) format timestamp be used to
ensure uniqueness.

<sess-version> is a version number for this session description. Its usage is up to the creating tool, so long as
<sess-version> is increased when a modification is made to the session data. Again, it is RECOMMENDED that
an NTP format timestamp is used.

<nettype> is a text string giving the type of network. Initially "IN" is defined to have the meaning "Internet", but
other values MAY be registered in the future.

<addrtype> is a text string giving the type of the address that follows. Initially "IP4" and "IP6" are defined, but
other values MAY be registered in the future.

<unicast-address> is the address of the machine from which the session was created. For an address type of
IP4, this is either the fully qualified domain name of the machine or the dotted-decimal representation of the IP
version 4 address of the machine. For an address type of IP6, this is either the fully qualified domain name of the
machine or the compressed textual representation of the IP version 6 address of the machine. For both IP4 and
IP6, the fully qualified domain name is the form that SHOULD be given unless this is unavailable, in which case
the globally unique address MAY be substituted. A local IP address MUST NOT be used in any context where
the SDP description might leave the scope in which the address is meaningful (for example, a local address
MUST NOT be included in an application-level referral that might leave the scope).

In general, the "o=" field serves as a globally unique identifier for this version of this session description, and the
subfields excepting the version taken together identify the session irrespective of any modifications.

Let’s define the originator class to represent the “o=” line and derive it from the attrs class so that it
can also have dynamic attributes. The individual properties such as usename (str), sessionid (long),
version (long), nettype (str), addrtype (str), address (str) are as described above. There are two
methods of importance: the constructor __init__ which is used to parse the SDP line, and the string
representation method __repr__ for format the SDP line.

import socket, time
…
 class originator(attrs):
 def __init__(self, value=None):

If a value is supplied in the constructor it parses the SDP line into individual properties by splitting the value
across white-space.

IMPLEMENTING SIP TELEPHONY

- 79 -

 if value:
 self.username, self.sessionid, self.version, self.nettype, self.addrtype, self.address = value.split(' ')
 self.sessionid = int(self.sessionid)
 self.version = int(self.version)

Otherwise if the value is not supplied in the constructor it assumes default values for the properties. For
example, the address assumes local hostname or IP address, username is ‘-‘, sessionid and
version are derived from the local time so that they are monotonically increasing, nettype and
addrtype take the defaults ‘IN’ and ‘IP4’.

 else:
 hostname = socket.gethostname(); ipaddress = socket.gethostbyname(hostname)
 self.username, self.sessionid, self.version, self.nettype, self.addrtype, self.address = \
 '-', int(time.time()), int(time.time()), 'IN', 'IP4', (hostname.find('.')>0 and hostname or ipaddress)

Converting an object of type originator into a string is straightforward – just join all the properties in the
right order using white-space.

 def __repr__(self):
 return ' '.join(map(lambda x: str(x), [self.username, self.sessionid, self.version, self.nettype, self.addrtype,
self.address]))

Connection data

From RFC4566 p.14 – Connection Data ("c=")

c=<nettype> <addrtype> <connection-address>

The "c=" field contains connection data.

A session description MUST contain either at least one "c=" field in each media description or a single "c=" field
at the session level. It MAY contain a single session-level "c=" field and additional "c=" field(s) per media
description, in which case the per-media values override the session-level settings for the respective media.

The first sub-field ("<nettype>") is the network type, which is a text string giving the type of network. Initially, "IN"
is defined to have the meaning "Internet", but other values MAY be registered in the future.

The second sub-field ("<addrtype>") is the address type. This allows SDP to be used for sessions that are not IP
based. This memo only defines IP4 and IP6, but other values MAY be registered in the future.

The third sub-field ("<connection-address>") is the connection address. OPTIONAL sub-fields MAY be added
after the connection address depending on the value of the <addrtype> field.

Sessions using an IPv4 multicast connection address MUST also have a time to live (TTL) value present in
addition to the multicast address. The TTL and the address together define the scope with which multicast
packets sent in this conference will be sent. TTL values MUST be in the range 0-255. Although the TTL MUST
be specified, its use to scope multicast traffic is deprecated; applications SHOULD use an administratively
scoped address instead.

The TTL for the session is appended to the address using a slash as a separator. An example is:

 c=IN IP4 224.2.36.42/127

- 80 -

Multiple addresses or "c=" lines MAY be specified on a per-media basis only if they provide multicast addresses
for different layers in a hierarchical or layered encoding scheme. They MUST NOT be specified for a session-
level "c=" field. The slash notation for multiple addresses described above MUST NOT be used for IP unicast
addresses.

The connection class derives from attrs and is used to represent the connection data described before.
The individual properties are nettype (str), addrtype (str), address (str) and optionally ttl (int) and
count (int). The constructor takes an optional string value. If the value is supplied, it is parsed into the
individual properties. Alternatively, the application can construct the object by supplying the individual
properties as attribute-value pairs.

 class connection(attrs):
 def __init__(self, value=None, **kwargs):
 if value:
 self.nettype, self.addrtype, rest = value.split(' ')
 rest = rest.split('/')
 if len(rest) == 1: self.address = rest[0]
 elif len(rest) == 2: self.address, self.ttl = rest[0], int(rest[1])
 else: self.address, self.ttl, self.count = rest[0], int(rest[1]), int(rest[2])
 elif 'address' in kwargs:
 self.address = kwargs.get('address')
 self.nettype = kwargs.get('nettype', 'IN')
 self.addrtype = kwargs.get('addrtype', 'IP4')
 if 'ttl' in kwargs: self.ttl = int(kwargs.get('ttl'))
 if 'count' in kwargs: self.count = int(kwargs.get('count'))

As mentioned, the connection object can be created in two ways as shown below. The first option parses
the value, whereas the second option takes the value of the individual properties. Certain properties have
default value when created using the second option, e.g., addrtype is “IP4” and nettype is “IN”.

>>> c = connection(value=”c=IN IP4 224.2.1.1/127”)
>>> c = connection(address=“224.2.1.1”, ttl=127)

To format a connection object into string, we put the properties separated by spaces or other separator we
needed in the following method.

 def __repr__(self):
 return self.nettype + ' ' + self.addrtype + ' ' + self.address + ('/' + str(self.ttl) if self.ttl else '') + ('/' + str(self.count) if
self.count else '')

Media descriptions

From RFC4566 p.22 – Media Descriptions ("m=")

m=<media> <port> <proto> <fmt> ...

IMPLEMENTING SIP TELEPHONY

- 81 -

A session description may contain a number of media descriptions. Each media description starts with an "m="
field and is terminated by either the next "m=" field or by the end of the session description. A media field has
several sub-fields:

<media> is the media type. Currently defined media are "audio", "video", "text", "application", and "message",
although this list may be extended in the future.

<port> is the transport port to which the media stream is sent. The meaning of the transport port depends on the
network being used as specified in the relevant "c=" field, and on the transport protocol defined in the <proto>
sub-field of the media field. Other ports used by the media application (such as the RTP Control Protocol (RTCP)
port [19]) MAY be derived algorithmically from the base media port or MAY be specified in a separate attribute
(for example, "a=rtcp:").

If non-contiguous ports are used or if they don't follow the parity rule of even RTP ports and odd RTCP ports, the
"a=rtcp:" attribute MUST be used. Applications that are requested to send media to a <port> that is odd and
where the "a=rtcp:" is present MUST NOT subtract 1 from the RTP port: that is, they MUST send the RTP to the
port indicated in <port> and send the RTCP to the port indicated in the "a=rtcp" attribute.

<proto> is the transport protocol. The meaning of the transport protocol is dependent on the address type field in
the relevant "c=" field. Thus a "c=" field of IP4 indicates that the transport protocol runs over IP4.

RTP/AVP: denotes RTP used under the RTP Profile for Audio and Video Conferences with Minimal Control
running over UDP.

The main reason to specify the transport protocol in addition to the media format is that the same standard media

<fmt> is a media format description. The fourth and any subsequent sub-fields describe the format of the media.
The interpretation of the media format depends on the value of the <proto> sub-field.

If the <proto> sub-field is "RTP/AVP" or "RTP/SAVP" the <fmt> sub-fields contain RTP payload type numbers.
When a list of payload type numbers is given, this implies that all of these payload formats MAY be used in the
session, but the first of these formats SHOULD be used as the default format for the session. For dynamic
payload type assignments the "a=rtpmap:" attribute SHOULD be used to map from an RTP payload type number
to a media encoding name that identifies the payload format. The "a=fmtp:" attribute MAY be used to specify
format parameters.

The media class derived from attrs class is used to represent the media description line and all the
subsequent SDP lines that are attached to this media description line. The properties such as media (str),
port (int), proto (str) and fmt (list) are defined as described above. The constructor, similar to the
connection object, takes an optional value string. If the value is supplied, it gets parsed into
individual properties, otherwise the named parameters in the argument list is used to populate the individual
properties.

 class media(attrs):
 def __init__(self, value=None, **kwargs):
 if value:
 self.media, self.port, self.proto, rest = value.split(' ', 3)
 self.port = int(self.port)
 self.fmt = []
 for f in rest.split(' '):
 a = attrs(); a.pt = f; self.fmt.append(a)
 elif 'media' in kwargs:
 self.media = kwargs.get('media')
 self.port = int(kwargs.get('port', 0))
 self.proto = kwargs.get('proto', 'RTP/AVP')
 self.fmt = kwargs.get('fmt', [])

- 82 -

There are two ways to create a media object as shown below. In the first option the supplied value string
is parsed, and in the second option the parameters populate the properties of the object. In the second option
certain parameters take the default values, e.g., default values for port and proto are 0 and ‘RTP/AVP’
respectively.

>>> m = media(value=”audio 8000 RTP/AVP 0 3 8”)
>>> m = media(media=”audio”, port=8000, fmt=[attrs(pt=0), attrs(pt=3), attrs(pt=8)])

Since the media object also stores the media description specific attributes, the formatting is slightly more
complicated to generate multiple SDP lines. Secondly, the format description attributes are stored differently
than the other attributes.

To format a media object we first print the media description (“m=”) SDP line using the media, port,
proto and fmt properties. Only the payload type (pt) property is used from individual elements in the
fmt format list.

 def __repr__(self):
 result = self.media + ' ' + str(self.port) + ' ' + self.proto + ' ' + ' '.join(map(lambda x: str(x.pt), self.fmt))

Then it prints out the additional headers such as “i=”, “c=”, “b=”, “k=” and various “a=” SDP lines that are
associated with this media description object. If the header is a multiple instance header then it can occur
multiple times, and the value is assumed to be a list.

 for k in filter(lambda x: x in self, 'icbka'): # order is important
 if k not in SDP._multiple: # single header
 result += '\r\n' + k + '=' + str(self[k])
 else:
 for v in self[k]:
 result += '\r\n' + k + '=' + str(v)

Finally, the “a=rtpmap:” attributes are appended from the fmt format list. Because of the ordering
restrictions on the headers, this should appear at the end. The formatted string is then returned as the
formatted media description which contains the value of the “m=” line followed by name and value of all the
other SDP lines that are associated with this “m=” line. Note that the header name, “m”, and equals character,
“=”, are not present in the returned string representing the value of this media object.

 for f in self.fmt:
 if f.name:
 result += '\r\n' + 'a=rtpmap:' + str(f.pt) + ' ' + f.name + '/' + str(f.rate) + (f.params and ('/'+f.params) or '')
 return result

Parsing

Now that we have defined the basic components, let’s define the internal parsing routine for the SDP class.

IMPLEMENTING SIP TELEPHONY

- 83 -

From RFC4566 p.8 – An SDP session description consists of a number of lines of text of the form:

<type>=<value>

where <type> MUST be exactly one case-significant character and <value> is structured text whose format
depends on <type>. In general, <value> is either a number of fields delimited by a single space character or a
free format string, and is case-significant unless a specific field defines otherwise. Whitespace MUST NOT be
used on either side of the "=" sign.

An SDP session description consists of a session-level section followed by zero or more media-level sections.
The session-level part starts with a "v=" line and continues to the first media-level section. Each media-level
section starts with an "m=" line and continues to the next media-level section or end of the whole session
description. In general, session-level values are the default for all media unless overridden by an equivalent
media-level value.

The connection ("c=") and attribute ("a=") information in the session-level section applies to all the media of that
session unless overridden by connection information or an attribute of the same name in the media description.

The following method takes the text string to parse into this SDP object. First we split the string into
individual lines. Care must be taken in treating “\n” as same as “\r\n” for interoperability with
implementations that generate “\n” as line termination instead of “\r\n”. Since various attributes can be either
global session attribute or media specific attribute, depending on whether they appear before any “m=” line
or after, we need to keep a state variable, g, to indicate whether we are parsing the global session context or
the local media description context.

 def _parse(self, text):
 g = True # whether we are in global line or per media line?
 for line in text.replace('\r\n', '\n').split('\n'):
 … # per line parsing

Each line is then split into the header name and value. Note that instead of using the split method we use
the partition method, because the partition needs to be done only once across the given token “=”
instead of tokenizing the string using the split method. The strtok and strtok_r functions in the C
programming language are equivalent to the split method of Python, and should be used with care.

 k, sep, v = line.partition('=')

If the header name is recognized to be implemented by the specific classes we defined earlier, then we create
those specific objects such as originator, connection and media, to parse the header value.

 if k == 'o': v = SDP.originator(v)
 elif k == 'c': v = SDP.connection(v)
 elif k == 'm': v = SDP.media(v)

Since there can be multiple instances of the “m=” line in the SDP data, the property m is defined as a list.
Each element in the list is of type media object. Since the attributes can be either in the global session
context or in the local media description context, we also identify the context for an attribute. In particular, if
property m doesn’t exist then we are in the global context, otherwise we are in the media context.

 if k == 'm': # new m= line
 if not self['m']:

- 84 -

 self['m'] = []
 self['m'].append(v)
 obj = self['m'][-1]
 elif self['m']: # not in global
 obj = self['m'][-1]
 … # store the attribute or other media specific header
 else: # global header
 obj = self
 … # store the attribute in global context

At this point the obj variable points to the appropriate context, either the global SDP object or the local
media object, to which the new header needs to be added.

Adding the new header in the global context is straight forward – if the header is multiple instance header
then create a list and append the value to the list, otherwise set the value of the header name property in the
SDP object. When accessing the property, a multiple-instance header returns a list of string values
whereas a single instance header returns the string value, e.g., SDP.a is a list whereas SDP.s is a single
string value.

 obj[k] = ((k in SDP._multiple) and ((k in obj) and (obj[k]+v) or [v])) or v

Adding a new header line in the media context is also similar, with one exception. If the header represents a
“a=rtpmap:” line, then that needs to be parsed into the format fmt list of the media object.

From RFC4566 p.25 – a=rtpmap:<payload type> <encoding name>/<clock rate> [/<encoding parameters>]

This attribute maps from an RTP payload type number (as used in an "m=" line) to an encoding name denoting
the payload format to be used. It also provides information on the clock rate and encoding parameters. It is a
media-level attribute that is not dependent on charset.

Although an RTP profile may make static assignments of payload type numbers to payload formats, it is more
common for that assignment to be done dynamically using "a=rtpmap:" attributes. As an example of a static
payload type, consider u-law PCM coded single-channel audio sampled at 8 kHz. This is completely defined in
the RTP Audio/Video profile as payload type 0, so there is no need for an "a=rtpmap:" attribute, and the media
for such a stream sent to UDP port 49232 can be specified as:

 m=audio 49232 RTP/AVP 0

An example of a dynamic payload type is 16-bit linear encoded stereo audio sampled at 16 kHz. If we wish to
use the dynamic RTP/AVP payload type 98 for this stream, additional information is required to decode it:

Up to one rtpmap attribute can be defined for each media format specified. Thus, we might have the following:

 m=audio 49230 RTP/AVP 96 97 98
 a=rtpmap:96 L8/8000
 a=rtpmap:97 L16/8000
 a=rtpmap:98 L16/11025/2

RTP profiles that specify the use of dynamic payload types MUST define the set of valid encoding names and/or
a means to register encoding names if that profile is to be used with SDP.

IMPLEMENTING SIP TELEPHONY

- 85 -

For audio streams, <encoding parameters> indicates the number of audio channels. This parameter is
OPTIONAL and may be omitted if the number of channels is one, provided that no additional parameters are
needed.

For video streams, no encoding parameters are currently specified.

 if k == 'a' and v.startswith('rtpmap:'):
 pt, rest = v[7:].split(' ', 1)
 name, sep, rest = rest.partition('/')
 rate, sep, params = rest.partition('/')
 for f in filter(lambda x: x.pt == pt, obj.fmt):
 f.name = name; f.rate = int(rate); f.params = params or None
 else:
 obj[k] = (k in SDP._multiple and ((k in obj) and (obj[k]+v) or [v])) or v

Formatting

Formatting a SDP data is relatively easy. The order of the headers are important. A multiple-instance header
is stored as a list and may return in multiple SDP lines. The method to format an SDP is written below.

 def __repr__(self):
 result = ''
 for k in filter(lambda x: x in self, 'vosiuepcbtam'): # order is important
 if k not in SDP._multiple: # single header
 result += k + '=' + str(self[k]) + '\r\n'
 else:
 for v in self[k]:
 result += k + '=' + str(v) + '\r\n'
 return result

Testing

Once we have finished the implementation of the SDP class, we can test the parsing and formatting function
as follows:

>>> s = '''v=0\r
o=jdoe 2890844526 2890842807 IN IP4 10.47.16.5\r
s=SDP Seminar\r
i=A Seminar on the session description protocol\r
u=http://www.example.com/seminars/sdp.pdf\r
e=j.doe@example.com (Jane Doe)\r
c=IN IP4 224.2.17.12/127\r
t=2873397496 2873404696\r
a=recvonly\r
m=audio 49170 RTP/AVP 0\r
m=video 51372 RTP/AVP 99\r
a=rtpmap:99 h263-1998/90000\r

- 86 -

'''
>>> sdp = SDP(s)
>>> print str(sdp) == s
True
>>> print sdp.m[0].port
49170
>>> print sdp.m[1].fmt[0]
{ pt: 99, name: “h263-1998”, rate: 90000, params: “” }

Now that we have described the implementation of SDP, let’s move on to using it in SIP telephony. As
mentioned before RFC3264 defines the offer-answer model which is used in the SIP session negotiation
between two parties.

Offer-answer in SIP

From RFC3264 p.1 – This document defines a mechanism by which two entities can make use of the Session
Description Protocol (SDP) to arrive at a common view of a multimedia session between them. In the model, one
participant offers the other a description of the desired session from their perspective, and the other participant
answers with the desired session from their perspective. This offer/answer model is most useful in unicast
sessions where information from both participants is needed for the complete view of the session. The
offer/answer model is used by protocols like the Session Initiation Protocol (SIP).

The means by which the offers and answers are conveyed are outside the scope of this document. The
offer/answer model defined here is the mandatory baseline mechanism used by the Session Initiation Protocol
(SIP).

We implement the offer-answer model in our module named rfc3264.

Usage

Before implementing the module, let’s list down the expected behavior of the module. The module should
define two methods: createOffer and createAnswer, to create session description for an offer or
answer respectively. We reuse the SDP and media definitions from the previous module rfc4566.

>>> from rfc4566 import SDP, attrs as format

Media can be described using the media object. The following code defines two media objects, one for
audio and other for video. The audio has two formats: PCMU and PCMA whereas video has one format
H.261.

>>> audio = SDP.media(media='audio', port='9000')
>>> audio.fmt = [format(pt=0, name='PCMU', rate=8000), format(pt=8, name='PCMA', rate=8000)]
>>> video = SDP.media(media='video', port='9002')
>>> video.fmt = [format(pt=31, name='H261', rate=90000)]

Now the application can create a new offer using these media description as follows.

IMPLEMENTING SIP TELEPHONY

- 87 -

>>> offer = createOffer([audio, video])

To test if the offer contains a valid SDP object, you can print the offer.

>>> print str(offer)

When the offer is received by the answerer, it can use the following code to generate the answer SDP.
Support that the answerer wants to support PCMU and GSM audio but no video.

>>> audio = SDP.media(media='audio', port='8020')
>>> audio.fmt = [format(pt=0), format(pt=3)] # for known payload types, description is optional
>>> answer = createAnswer([audio], offer)

Now suppose that the offerer wants to change the offer, e.g., using SIP re-INVITE, by removing video from
the offer, it should reuse the previous offer as follows.

>>> newOffer = createOffer([audio], offer)

Thus, the offer can be created either from empty state or from a previous offer, whereas an answer is always
created from a previous offer.

Generating the offer

To start the implementation, please note that we need to use the definitions from the rfc4566 module.
Although RFC 3264 uses old specification of SDP as in RFC 2327, we use the new specification of SDP as
in RFC 4566.

from std.rfc4566 import SDP, attrs as format
import socket

We also define a module level flag to enable or disable the trace which helps us in debugging the module.
The default is to disable the trace, but a programme may enable it by setting it to True.

_debug = False

From RFC3264 p.4 – Media Stream: From RTSP [8], a media stream is a single media instance, e.g., an audio
stream or a video stream as well as a single whiteboard or shared application group. In SDP, a media stream is
described by an "m=" line and its associated attributes.

We use the media class defined in SDP to represent the media stream.

- 88 -

The offer (and answer) MUST be a valid SDP message, as defined by RFC 2327, with one exception. RFC
2327 mandates that either an e or a p line is present in the SDP message. This specification relaxes that
constraint; an SDP formulated for an offer/answer application MAY omit both the e and p lines. The numeric
value of the session id and version in the o line MUST be representable with a 64 bit signed integer. The initial
value of the version MUST be less than (2**62)-1, to avoid rollovers. Although the SDP specification allows for
multiple session descriptions to be concatenated together into a large SDP message, an SDP message used in
the offer/answer model MUST contain exactly one session description.

The SDP "s=" line conveys the subject of the session, which is reasonably defined for multicast, but ill defined for
unicast. For unicast sessions, it is RECOMMENDED that it consist of a single space character (0x20) or a dash
(-).

Unfortunately, SDP does not allow the "s=" line to be empty.

The SDP "t=" line conveys the time of the session. Generally, streams for unicast sessions are created and
destroyed through external signaling means, such as SIP. In that case, the "t=" line SHOULD have a value of "0
0".

The offer will contain zero or more media streams (each media stream is described by an "m=" line and its
associated attributes). Zero media streams implies that the offerer wishes to communicate, but that the streams
for the session will be added at a later time through a modified offer. The streams MAY be for a mix of unicast
and multicast; the latter obviously implies a multicast address in the relevant "c=" line(s).

Construction of each offered stream depends on whether the stream is multicast or unicast.

def createOffer(streams, previous=None, **kwargs):
 '''Create an offer SDP using local (streams) list of media Stream objects.
 If a previous offer/answer SDP is specified then it creates a modified offer.
 Additionally, the optional keyword arguments such as e and p can be specified.'''
 s = SDP()
 s.v = '0'
 for a in "iep": # add optioanl e and p headers if present
 if a in kwargs: s[a] = kwargs[a]
 s.o = SDP.originator(previous and str(previous.o) or None)
 if previous: s.o.version = s.o.version + 1
 s.s = '-'
 s.t = ['0 0'] # because t= can appear multiple times, it is a list.
 s.m = streams
 return s

Generating the answer

We simplify our implementation to support only the unicast addresses, and not worry about various headers.
The following implementation just matches the media description lines and the format list correctly from the
offer and the supplied locally supported media streams.

def createAnswer(streams, offer, **kwargs):
 '''Create an answer SDP for the remote offer SDP using local (streams) list of media Stream objects.'''
 s = SDP()
 s.v = '0'
 for a in "iep":
 if a in kwargs: s[a] = kwargs[a]

IMPLEMENTING SIP TELEPHONY

- 89 -

From RFC3264 p.9 – The answer to an offered session description is based on the offered session description.
If the answer is different from the offer in any way (different IP addresses, ports, etc.), the origin line MUST be
different in the answer, since the answer is generated by a different entity. In that case, the version number in the
"o=" line of the answer is unrelated to the version number in the o line of the offer.

 s.o = SDP.originator()
 s.s = '-'

The "t=" line in the answer MUST equal that of the offer. The time of the session cannot be negotiated.

 s.t = offer.t
 s.m = []
 streams = list(streams) # so that original stream is not modified

For each "m=" line in the offer, there MUST be a corresponding "m=" line in the answer. The answer MUST
contain exactly the same number of "m=" lines as the offer. This allows for streams to be matched up based on
their order. This implies that if the offer contained zero "m=" lines, the answer MUST contain zero "m=" lines.

 for your in offer.m: # for each m= line in offer
 my = None # answered stream
 for i in range(0, len(streams)):

If a stream is offered with a unicast address, the answer for that stream MUST contain a unicast address. The
media type of the stream in the answer MUST match that of the offer.

If a stream is offered as sendonly, the corresponding stream MUST be marked as recvonly or inactive in the
answer. If a media stream is listed as recvonly in the offer, the answer MUST be marked as sendonly or inactive
in the answer. If an offered media stream is listed as sendrecv (or if there is no direction attribute at the media or
session level, in which case the stream is sendrecv by default), the corresponding stream in the answer MAY be
marked as sendonly, recvonly, sendrecv, or inactive. If an offered media stream is listed as inactive, it MUST be
marked as inactive in the answer.

For streams marked as recvonly in the answer, the "m=" line MUST contain at least one media format the
answerer is willing to receive with from amongst those listed in the offer. The stream MAY indicate additional
media formats, not listed in the corresponding stream in the offer, that the answerer is willing to receive. For
streams marked as sendonly in the answer, the "m=" line MUST contain at least one media format the answerer
is willing to send from amongst those listed in the offer. For streams marked as sendrecv in the answer, the "m="
line MUST contain at least one codec the answerer is willing to both send and receive, from amongst those listed
in the offer. The stream MAY indicate additional media formats, not listed in the corresponding stream in the offer,
that the answerer is willing to send or receive (of course, it will not be able to send them at this time, since it was
not listed in the offer). For streams marked as inactive in the answer, the list of media formats is constructed
based on the offer. If the offer was sendonly, the list is constructed as if the answer were recvonly. Similarly, if
the offer was recvonly, the list is constructed as if the answer were sendonly, and if the offer was sendrecv, the
list is constructed as if the answer were sendrecv. If the offer was inactive, the list is constructed as if the offer
were actually sendrecv and the answer were sendrecv.

The connection address and port in the answer indicate the address where the answerer wishes to receive
media (in the case of RTP, RTCP will be received on the port which is one higher unless there is an explicit
indication otherwise). This address and port MUST be present even for sendonly streams; in the case of RTP,
the port one higher is still used to receive RTCP.

- 90 -

 if streams[i].media == your.media: # match the first stream in streams
 my = SDP.media(str(streams[i])) # found, hence
 del streams[i] # remove from streams so that we don't match again for another m=
 found = []

In the case of RTP, if a particular codec was referenced with a specific payload type number in the offer, that
same payload type number SHOULD be used for that codec in the answer. Even if the same payload type
number is used, the answer MUST contain rtpmap attributes to define the payload type mappings for dynamic
payload types, and SHOULD contain mappings for static payload types. The media formats in the "m=" line
MUST be listed in order of preference, with the first format listed being preferred. In this case, preferred means
that the offerer SHOULD use the format with the highest preference from the answer.

Although the answerer MAY list the formats in their desired order of preference, it is RECOMMENDED that
unless there is a specific reason, the answerer list formats in the same relative order they were present in the
offer. In other words, if a stream in the offer lists audio codecs 8, 22 and 48, in that order, and the answerer only
supports codecs 8 and 48, it is RECOMMENDED that, if the answerer has no reason to change it, the ordering of
codecs in the answer be 8, 48, and not 48, 8. This helps assure that the same codec is used in both directions.

The interpretation of fmtp parameters in an offer depends on the parameters. In many cases, those parameters
describe specific configurations of the media format, and should therefore be processed as the media format
value itself would be. This means that the same fmtp parameters with the same values MUST be present in the
answer if the media format they describe is present in the answer. Other fmtp parameters are more like
parameters, for which it is perfectly acceptable for each agent to use different values. In that case, the answer
MAY contain fmtp parameters, and those MAY have the same values as those in the offer, or they MAY be
different. SDP extensions that define new parameters SHOULD specify the proper interpretation in offer/answer.

The answerer MAY include a non-zero ptime attribute for any media stream; this indicates the packetization
interval that the answerer would like to receive. There is no requirement that the packetization interval be the
same in each direction for a particular stream.

The answerer MAY include a bandwidth attribute for any media stream; this indicates the bandwidth that the
answerer would like the offerer to use when sending media. The value of zero is allowed, interpreted as
described in Section 5.

 for fy in your.fmt: # all offered formats, find the matching pairs
 for fm in my.fmt:# the preference order is from offer, hence do for fy, then for fm.
 try: fmpt, fypt = int(fm.pt), int(fy.pt) # try using numeric payload type
 except: fmpt = fypt = -1
 if 0<=fmpt<32 and 0<=fypt<32 and fmpt == fypt \
 or fmpt<0 and fypt<0 and fm.pt == fy.pt \
 or fm.name == fy.name and fm.rate == fy.rate and fm.count == fy.count: # we don't match the params
 found.append((fy, fm)); break

If the answerer has no media formats in common for a particular offered stream, the answerer MUST reject that
media stream by setting the port to zero.

 if found: # we found some matching formats, put them in
 my.fmt = map(lambda x: x[0], found) # use remote's fy including fy.pt
 else:
 my.fmt = [format(pt=0)] # no match in formats, but matched media, must put a format with payload type 0
 my.port = 0 # and reset the port.

IMPLEMENTING SIP TELEPHONY

- 91 -

An offered stream MAY be rejected in the answer, for any reason. If a stream is rejected, the offerer and
answerer MUST NOT generate media (or RTCP packets) for that stream. To reject an offered stream, the port
number in the corresponding stream in the answer MUST be set to zero. Any media formats listed are ignored.
At least one MUST be present, as specified by SDP.

 if not my: # did not match the stream, must put a stream with port = 0
 my = SDP.media(str(your))
 my.port = 0
 s.m.append(my) # append it to our media

If there are no media formats in common for all streams, the entire offered session is rejected.

 valid = False
 for my in s.m: # check if any valid matching stream is present with valid port
 if my.port != 0:
 valid = True
 break

 return valid and s or None # if no valid matching stream found, return None

Once the answerer has sent the answer, it MUST be prepared to receive media for any recvonly streams
described by that answer. It MUST be prepared to send and receive media for any sendrecv streams in the
answer, and it MAY send media immediately. The answerer MUST be prepared to receive media for recvonly or
sendrecv streams using any media formats listed for those streams in the answer, and it MAY send media
immediately. When sending media, it SHOULD use a packetization interval equal to the value of the ptime
attribute in the offer, if any was present. It SHOULD send media using a bandwidth no higher than the value of
the bandwidth attribute in the offer, if any was present. The answerer MUST send using a media format in the
offer that is also listed in the answer, and SHOULD send using the most preferred media format in the offer that is
also listed in the answer. In the case of RTP, it MUST use the payload type numbers from the offer, even if they
differ from those in the answer.

In this chapter we have implemented the session description protocol and offer-answer model that are needed
for SIP telephony. Next we describe the basic and digest authentication.

Authentication
Implementing RFC 2617 for Basic and Digest authentication

SIP uses the authentication mechanism defined for HTTP. In particular, the digest authentication defined in
RFC2617 provides a challenge-response authentication that does not send the password in clear text.

We implement the authentication module named rfc2617. We would like to support both “Basic” and
“Digest” authentication method defined in RFC2617. Although SIP does not allow “Basic” authentication
because it sends the password in clear, we do implement the mechanism as it can work well with underlying
transport security between the client and the server.

Usage

Before we implement the module, let’s discuss the expected usage of the module. When a client (UAC)
sends a SIP request to the server (UAS), the server may challenge the request by responding with a 401 or
407 response. The server puts the WWW-Authenticate or Proxy-Authenticate header in the
response. Let’s assume that the server invokes the createAuthenticate method to create the header
value.

>>> print createAuthenticate('Basic', realm='iptel.org')
Basic realm="iptel.org"
>>> print createAuthenticate('Digest', realm='iptel.org', domain='sip:iptel.org', nonce='somenonce')
Digest realm="iptel.org", domain="sip:iptel.org", qop="auth", nonce="somenonce", opaque="", stale=FALSE,
algorithm=MD5

When the client wants to re-send the request with the authorization credentials, it puts the Authorization
or Proxy-Authorization header in the new request which supplies the credentials. It invokes the
createAuthorization method to create the header value.

>>> print createAuthorization('Basic realm="WallyWorld"', 'Aladdin', 'open sesame')
Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==
>>> context = {'cnonce':'0a4f113b', 'nc': 0}
>>> print createAuthorization('Digest realm="testrealm@host.com", qop="auth",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093", opaque="5ccc069c403ebaf9f0171e9517f40e41"', 'Mufasa', 'Circle Of
Life', '/dir/index.html', 'GET', None, context)
Digest cnonce="0a4f113b",nc=00000001,nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
opaque="5ccc069c403ebaf9f0171e9517f40e41",qop=auth,realm="testrealm@host.com",response="6629fae49393a053
97450978507c4ef1",uri="/dir/index.html",username="Mufasa"

Let’s now focus on implementing these two public methods in our module.

IMPLEMENTING SIP TELEPHONY

- 93 -

Quoting a string

From RFC2617 p.3 – HTTP provides a simple challenge-response authentication mechanism that MAY be used
by a server to challenge a client request and by a client to provide authentication information. It uses an
extensible, case-insensitive token to identify the authentication scheme, followed by a comma-separated list of
attribute-value pairs which carry the parameters necessary for achieving authentication via that scheme.

 auth-scheme = token
 auth-param = token "=" (token | quoted-string)

Let’s define the quote and unquote internal methods that can quote or unquote a string if needed.

_quote = lambda s: '"' + s + '"' if not s or s[0] != '"' != s[-1] else s
_unquote = lambda s: s[1:-1] if s and s[0] == '"' == s[-1] else s

Create Authenticate

The method takes the authMethod argument which is either “Basic” or “Digest” (case-insensitive),
followed by bunch of named parameters. Possible parameter names are realm, domain, qop, nonce,
opaque, stale and algorithm. Usually the realm is mandatory for “Basic” authentication, and
realm and domain for “Digest”. Other parameters if needed but not specified, take the default values.

from random import randint
from hashlib import md5
from base64 import b64encode
import time
…
def createAuthenticate(authMethod='Digest', **kwargs):

The “Basic” authentication’s header value is straightforward which just puts the realm as quoted string in
the authentication parameters.

 if authMethod.lower() == 'basic':
 return 'Basic realm=%s'%(_quote(kwargs.get('realm', '')))

The “Digest” authentication creates the list of authentication parameters from the supplied values or the
defaults, such that the parameters are put in order specified below. I have seen some implementation that
doesn’t interoperate if the order of the parameters is not same as what is presented in the specification. Only
the stale and algorithm parameters are unquoted, others are quoted strings.

 elif authMethod.lower() == 'digest':
 predef = ('realm', 'domain', 'qop', 'nonce', 'opaque', 'stale', 'algorithm')
 unquoted = ('stale', 'algorithm')
 now = time.time(); nonce = b64encode('%d %s'%(now, md5('%d:%d'%(now, id(createAuthenticate)))))
 nonce = kwargs.get('nonce', nonce)
 default = dict(realm='', domain='', opaque='', stale='FALSE', algorithm='MD5', qop='auth', nonce=nonce)
 # put predef attributes in order before non predef attributes

- 94 -

 kv = map(lambda x: (x, kwargs.get(x, default[x])), predef) + filter(lambda x: x[0] not in predef, kwargs.items())
 return 'Digest ' + ', '.join(map(lambda y: '%s=%s'%(y[0], _quote(y[1]) if y[0] not in unquoted else y[1]), kv))

The method gives an error if the authMethod is unsupported.

 else: raise ValueError, 'invalid authMethod%s'%(authMethod)

Create Authorization

From RFC2617 p.3 – The 401 (Unauthorized) response message is used by an origin server to challenge the
authorization of a user agent. This response MUST include a WWW-Authenticate header field containing at least
one challenge applicable to the requested resource. The 407 (Proxy Authentication Required) response
message is used by a proxy to challenge the authorization of a client and MUST include a Proxy-Authenticate
header field containing at least one challenge applicable to the proxy for the requested resource.

 challenge = auth-scheme 1*SP 1#auth-param

A user agent that wishes to authenticate itself with an origin server--usually, but not necessarily, after receiving a
401 (Unauthorized)--MAY do so by including an Authorization header field with the request. A client that wishes
to authenticate itself with a proxy--usually, but not necessarily, after receiving a 407 (Proxy Authentication
Required)--MAY do so by including a Proxy-Authorization header field with the request. Both the Authorization
field value and the Proxy-Authorization field value consist of credentials containing the authentication information
of the client for the realm of the resource being requested. The user agent MUST choose to use one of the
challenges with the strongest auth-scheme it understands and request credentials from the user based upon that
challenge.

 credentials = auth-scheme #auth-param

The following method builds the Authorization header value for the specified challenge. The
challenge argument must be a string representing the WWW-Authenticate (or Proxy-
Authenticate) header value. The method parses it to identify the various authentication parameters. The
other arguments are as follows: the username and password parameters supply the credentials for
authentication, the uri, method and entityBody parameters supply those properties of the request
which are used in building the digest credentials, and finally the context argument is used to store the state
for digest authorization, such as cnonce and nonceCount, if available.

def createAuthorization(challenge, username, password, uri=None, method=None, entityBody=None, context=None):
 authMethod, sep, rest = challenge.strip().partition(' ')
 ch, cr = dict(), dict() # challenge and credentials
 cr['password'] = password
 cr['username'] = username

From RFC2617 p.5 – The "basic" authentication scheme is based on the model that the client must authenticate
itself with a user-ID and a password for each realm. The realm value should be considered an opaque string
which can only be compared for equality with other realms on that server. The server will service the request only
if it can validate the user-ID and password for the protection space of the Request-URI. There are no optional
authentication parameters. For Basic, the framework above is utilized as follows:

 challenge = "Basic" realm

IMPLEMENTING SIP TELEPHONY

- 95 -

 credentials = "Basic" basic-credentials

Upon receipt of an unauthorized request for a URI within the protection space, the origin server MAY respond
with a challenge like the following:

 WWW-Authenticate: Basic realm="WallyWorld"

where "WallyWorld" is the string assigned by the server to identify the protection space of the Request-URI. A
proxy may respond with the same challenge using the Proxy-Authenticate header field.

We delegate this function into the basic method defined later.

 if authMethod.lower() == 'basic':
 return authMethod + ' ' + basic(cr)

From RFC2617 p.6 – Like Basic Access Authentication, the Digest scheme is based on a simple challenge-
response paradigm. The Digest scheme challenges using a nonce value. A valid response contains a checksum
(by default, the MD5 checksum) of the username, the password, the given nonce value, the HTTP method, and
the requested URI. In this way, the password is never sent in the clear. Just as with the Basic scheme, the
username and password must be prearranged in some fashion not addressed by this document.

 elif authMethod.lower() == 'digest':
 for n,v in map(lambda x: x.strip().split('='), rest.split(',') if rest else []):
 ch[n.lower().strip()] = _unquote(v.strip())
 # TODO: doesn't work if embedded ',' in value, e.g., qop="auth,auth-int"

If a server receives a request for an access-protected object, and an acceptable Authorization header is not sent,
the server responds with a "401 Unauthorized" status code, and a WWW-Authenticate header as per the
framework defined above, which for the digest scheme is utilized as follows:

 challenge = "Digest" digest-challenge
 digest-challenge = 1#(realm | [domain] | nonce |
 [opaque] |[stale] | [algorithm] |
 [qop-options] | [auth-param])
 domain = "domain" "=" <"> URI (1*SP URI) <">
 URI = absoluteURI | abs_path
 nonce = "nonce" "=" nonce-value
 nonce-value = quoted-string
 opaque = "opaque" "=" quoted-string
 stale = "stale" "=" ("true" | "false")
 algorithm = "algorithm" "=" ("MD5" | "MD5-sess" | token)
 qop-options = "qop" "=" <"> 1#qop-value <">
 qop-value = "auth" | "auth-int" | token

 for y in filter(lambda x: x in ch, ['username', 'realm', 'nonce', 'opaque', 'algorithm']):
 cr[y] = ch[y]
 cr['uri'] = uri
 cr['httpMethod'] = method
 if 'qop' in ch:
 if context and 'cnonce' in context:
 cnonce, nc = context['cnonce'], context['nc'] + 1
 else:
 cnonce, nc = H(str(randint(0, 2**31))), 1
 if context:

- 96 -

 context['cnonce'], context['nc'] = cnonce, nc
 cr['qop'], cr['cnonce'], cr['nc'] = 'auth', cnonce, '%08x'% nc

The client is expected to retry the request, passing an Authorization header line, which is defined according to the
framework above, utilized as follows.

 credentials = "Digest" digest-response
 digest-response = 1#(username | realm | nonce |
 digest-uri | response | [algorithm] |
 [cnonce] | [opaque] | [message-qop] |
 [nonce-count] | [auth-param])
 username = "username" "=" username-value
 username-value = quoted-string
 digest-uri = "uri" "=" digest-uri-value
 digest-uri-value = request-uri ; As specified by HTTP/1.1
 message-qop = "qop" "=" qop-value
 cnonce = "cnonce" "=" cnonce-value
 cnonce-value = nonce-value
 nonce-count = "nc" "=" nc-value
 nc-value = 8LHEX
 response = "response" "=" request-digest

 cr['response'] = digest(cr)
 items = sorted(filter(lambda x: x not in ['name', 'authMethod', 'value', 'httpMethod', 'entityBody', 'password'], cr))
 return authMethod + ' ' + ','.join(map(lambda y: '%s=%s'%(y, (cr[y] if y == 'qop' or y == 'nc' else _quote(cr[y]))), items))
 else:
 raise ValueError, 'Invalid auth method -- ' + authMethod

In this document the string obtained by applying the digest algorithm to the data "data" with secret "secret" will be
denoted by KD(secret, data), and the string obtained by applying the checksum algorithm to the data "data" will
be denoted H(data). The notation unq(X) means the value of the quoted-string X without the surrounding quotes.

For the "MD5" and "MD5-sess" algorithms

 H(data) = MD5(data)

and

 KD(secret, data) = H(concat(secret, ":", data))

H = lambda d: md5(d).hexdigest()
KD = lambda s, d: H(s + ':' + d)

The first time the client requests the document, no Authorization header is sent, so the server responds with:

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: Digest
 realm="testrealm@host.com",
 qop="auth,auth-int",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

The client may prompt the user for the username and password, after which it will respond with a new request,
including the following Authorization header:

 Authorization: Digest username="Mufasa",

IMPLEMENTING SIP TELEPHONY

- 97 -

 realm="testrealm@host.com",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 uri="/dir/index.html",
 qop=auth,
 nc=00000001,
 cnonce="0a4f113b",
 response="6629fae49393a05397450978507c4ef1",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

>>> input = {'httpMethod':'GET', 'username':'Mufasa', 'password': 'Circle Of Life', 'realm':'testrealm@host.com',
'algorithm':'md5', 'nonce':'dcd98b7102dd2f0e8b11d0f600bfb0c093', 'uri':'/dir/index.html', 'qop':'auth', 'nc': '00000001',
'cnonce':'0a4f113b', 'opaque':'5ccc069c403ebaf9f0171e9517f40e41'}
>>> print digest(input)
"6629fae49393a05397450978507c4ef1"

Digest

We define the digest method to create such a digest response.

def digest(cr):
 algorithm, username, realm, password, nonce, cnonce, nc, qop, httpMethod, uri, entityBody \
 = map(lambda x: cr[x] if x in cr else None, ['algorithm', 'username', 'realm', 'password', 'nonce', 'cnonce', 'nc', 'qop',
'httpMethod', 'uri', 'entityBody'])

If the "algorithm" directive's value is "MD5" or is unspecified, then A1 is:

 A1 = unq(username-value) ":" unq(realm-value) ":" passwd

where

 passwd = < user's password >

If the "algorithm" directive's value is "MD5-sess", then A1 is calculated only once - on the first request by the client
following receipt of a WWW-Authenticate challenge from the server. It uses the server nonce from that
challenge, and the first client nonce value to construct A1 as follows:

 A1 = H(unq(username-value) ":" unq(realm-value)
 ":" passwd)
 ":" unq(nonce-value) ":" unq(cnonce-value)

 if algorithm and algorithm.lower() == 'md5-sess':
 A1 = H(username + ':' + realm + ':' + password) + ':' + nonce + ':' + cnonce
 else:
 A1 = username + ':' + realm + ':' + password

If the "qop" directive's value is "auth" or is unspecified, then A2 is:

 A2 = Method ":" digest-uri-value

If the "qop" value is "auth-int", then A2 is:

- 98 -

 A2 = Method ":" digest-uri-value ":" H(entity-body)

 if not qop or qop == 'auth':
 A2 = httpMethod + ':' + str(uri)
 else:
 A2 = httpMethod + ':' + str(uri) + ':' + H(str(entityBody))

If the "qop" value is "auth" or "auth-int":

 request-digest = <"> < KD (H(A1), unq(nonce-value)
 ":" nc-value
 ":" unq(cnonce-value)
 ":" unq(qop-value)
 ":" H(A2)
) <">

If the "qop" directive is not present (this construction is for compatibility with RFC 2069):

 request-digest =
 <"> < KD (H(A1), unq(nonce-value) ":" H(A2)) > <">

 if qop and (qop == 'auth' or qop == 'auth-int'):
 a = nonce + ':' + str(nc) + ':' + cnonce + ':' + qop + ':' + A2
 return _quote(KD(H(A1), nonce + ':' + str(nc) + ':' + cnonce + ':' + qop + ':' + H(A2)))
 else:
 return _quote(KD(H(A1), nonce + ':' + H(A2)))

Basic

If the user agent wishes to send the userid "Aladdin" and password "open sesame", it would use the following
header field:

 Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

 >>> print basic({'username':'Aladdin', 'password':'open sesame'})
 QWxhZGRpbjpvcGVuIHNlc2FtZQ==

To receive authorization, the client sends the userid and password, separated by a single colon (":") character,
within a base64 encoded string in the credentials.

 basic-credentials = base64-user-pass
 base64-user-pass = <base64 [4] encoding of user-pass,
 except not limited to 76 char/line>
 user-pass = userid ":" password
 userid = *<TEXT excluding ":">
 password = *TEXT

Userids might be case sensitive.

def basic(cr):
 return b64encode(cr['username'] + ':' + cr['password'])

IMPLEMENTING SIP TELEPHONY

- 99 -

The authentication module forms an integral part of any SIP implementation for both client as well as server
side. Next we explore the client specific extensions for SIP telephony.

Part

 3 Client extensions
this part extends the basic implementation to support various client-side features such as media transport,
traversal of network address translator (NAT) and firewall, instant messaging and presence, contact list
management and audio-video tools.

Real-time Transport Protocol
Implementing RTP/RTCP as per RFC 3550, RFC 3551

The Real-time Transport Protocol (RTP) defines a standardized packet format for delivering audio and video
over the Internet. It is used for several internet protocols such as RTSP for streaming and SIP for multimedia
sessions.

From RFC3550 p.1 – This memorandum describes RTP, the real-time transport protocol. RTP provides end-to-
end network transport functions suitable for applications transmitting real-time data, such as audio, video or
simulation data, over multicast or unicast network services. RTP does not address resource reservation and
does not guarantee quality-of-service for real-time services. The data transport is augmented by a control
protocol (RTCP) to allow monitoring of the data delivery in a manner scalable to large multicast networks, and to
provide minimal control and identification functionality. RTP and RTCP are designed to be independent of the
underlying transport and network layers. The protocol supports the use of RTP-level translators and mixers.

Most of the text in this memorandum is identical to RFC 1889 which it obsoletes. There are no changes in the
packet formats on the wire, only changes to the rules and algorithms governing how the protocol is used. The
biggest change is an enhancement to the scalable timer algorithm for calculating when to send RTCP packets in
order to minimize transmission in excess of the intended rate when many participants join a session
simultaneously.

The RTP specification inserts a header, typically 12 bytes long, to the audio video payload. This RTP header
provides synchronization, timing and sequencing information. RTP works in conjunction with another
protocol, namely Real-time Transport Control Protocol (RTCP). RTCP is used to provide various quality
feedback and synchronization information. The base specification works for both unicast as well as multicast
applications. The implementation of base RTP is straight forward. However, the implementation of RTCP is
more involved. Unlike the other standards such as SIP, the specification of RTP and RTCP is presented in the
RFCs in very low level details, including source code in C programming language. This helps us for those
parts where we can readily port the C source code to Python programming language for our implementation.

In this chapter we will implement RTP and RTCP as per RFC 3550. We will also implement the audio video
profile as defined in RFC 3551. Let’s create new module named rfc3550 and rfc3551 to implement
these two specifications.

Implementing RTP and RTCP

At the high level there are four parts in the rfc3550 module: (1) the RTP and RTCP classes define the
packet format for RTP and RTCP, respectively, including parsing and formatting, (2) the Session class
defines the control behavior for an RTP session, (3) the Source class represents a member or source in a
session, and (4) the Network class abstracts out the network behavior such as a pair sockets, hence allows
us to keep the network transport outside our implementation.

In our module we will use a number of existing libraries such as struct for binary packet format, random
for random number generation, math for various math operations, time for getting the current time, and
socket for getting the IP address and performing network transport.

import struct, random, math, time, socket
from kutil import getlocaladdr

- 102 -

Let’s also define a convenience flag to enable or disable the trace in our module.

_debug = False

Packet format

The packet format for RTP and RTCP follows the binary protocol mechanism. Let’s define a convenience
function to print some data in binary format, to help us debug out module. Let’s assume the binstr
function converts the supplied string into its binary representation with up to 32 bits per line. The
specification also assumes 32-bits boundary for various headers.

>>> print binstr('\\x01\\x02\\x03\\x04\\x05\\x06\\x07')
00000001000000100000001100000100
000001010000011000000111--------

We implement this function in two steps: first we define a method called binary which converts the
supplied data into list of strings, where each string is the binary representation of the specific number of
consecutive bytes as controlled by the size argument. For example, calling binary(data, size=4)
will return lists containing binary representations of all the 32-bits words in the data.

def binary(data, size=4):
 all = ''.join([''.join([('1' if (ord(x) & (1<<(7-y))) else '0') for y in range(0, 8)]) for x in data])
 result, size = [], size*8 # size to bits
 while len(all) >= size:
 result.append(all[:size])
 all = all[size:]
 if len(all)>0:
 result.append(all + '-'*(size-len(all)))
 return result

In the second step we define a method to convert this list into a single multi-line string for printing purpose.

binstr = lambda x: '\n'.join(binary(x))

RTP packet

From RFC3550 p.8 – RTP packet: A data packet consisting of the fixed RTP header, a possibly empty list of
contributing sources (see below), and the payload data. Some underlying protocols may require an
encapsulation of the RTP packet to be defined. Typically one packet of the underlying protocol contains a single
RTP packet, but several RTP packets MAY be contained if permitted by the encapsulation method.

Let’s assume that the RTP class represents an RTP packet. There are two important functions: parsing and
formatting. An RTP object can be constructed either from individual elements of the RTP header or from the

IMPLEMENTING SIP TELEPHONY

- 103 -

received data. In the latter case, it parses the data into the RTP object. The formatting function can be
implemented using the __repr__ method to get the string (binary) representation of the object. This allows
us to use the object in string context, where it automatically gets the binary formatted value of the packet.

Usage

The following example shows how to construct an RTP packet by specifying the individual header fields
using named parameters. The extn argument supplies the length as well as the value in a tuple, and the
payload argument supplies the value in binary form.

>>> p1 = RTP(pt=8, seq=12, ts=13, ssrc=14, csrcs=[15, 16], marker=True, extn=(17, '\\x18\\x19\\x1a\\x1b'),
payload='\\x1c\\x1d\\x1e')

By printing the hexadecimal representation of the packet, we can confirm that our packet was well formed. In
particular, you can check the various headers, the extension field, payload and the final padding byte.

>>> print ''.join(['%02x'%ord(x) for x in str(p1)])
b288000c0000000d0000000e0000000f000000100011000118191a1b1c1d1e01

To further verify the functions, let’s construct another RTP packet using the value of the first packet.

>>> p2 = RTP(value=str(p1))

We can print the individual headers fields of the packet to verify that the values are what were set in the
original packet.

>>> print p2.pt, p2.seq, p2.ts, p2.ssrc, p2.csrcs, p2.marker, p2.extn, repr(p2.payload)
8 12 13 14 [15, 16] True (17, '\\x18\\x19\\x1a\\x1b') '\\x1c\\x1d\\x1e'

The following example demonstrates the binary representation of the RTP packet.

>>> print '\\n'.join(binary(str(p2)))
10110010100010000000000000001100
00000000000000000000000000001101
00000000000000000000000000001110
00000000000000000000000000001111
00000000000000000000000000010000
00000000000100010000000000000001
00011000000110010001101000011011
00011100000111010001111000000001

- 104 -

Properties

Let’s define the RTP class. As mentioned above, the constructor takes overloaded set of arguments: either the
value argument can be supplied containing the binary packet, or the individual header fields can be
supplied. These individual header fields are stored as properties in the RTP object. The pt or payload type is
an integer 0-127. The seq property is a two-bytes integer representing the sequence number. The ts
property is a four-bytes integer representing the timestamp. The ssrc property is a four-bytes integer
representing the synchronization source identifier. The csrcs is a list of four-bytes integers, representing the
various contributing source identifiers, if any. The marker property is a Boolean indicating whether the
marker is set or not. The extn optional property is a tuple, with first element indicating the length and the
second element representing the actual binary data for the extension. The payload property represents the
actual binary payload data in this packet.

class RTP(object):
 def __init__(self, value=None, pt=0, seq=0, ts=0, ssrc=0, csrcs=[], marker=False, extn=None, payload=''):
 if not value: # construct using components
 self.pt, self.seq, self.ts, self.ssrc, self.csrcs, self.marker, self.extn, self.payload = \
 pt, seq, ts, ssrc, csrcs, marker, extn, payload

Parsing

If value argument is supplied, we parse the value into various header field properties as follows. The
minimum header size is 12 bytes, otherwise it gives an error. The RTP version number must be 2 otherwise it
gives and error.

 else: # parse the packet.
 if len(value) < 12: raise ValueError, 'RTP packet must be at least 12 bytes'
 if ord(value[0]) & 0xC0 != 0x80: raise ValueError, 'RTP version must be 2'

The first 12 bytes are unpacked into the initial mandatory headers.

 px, mpt, self.seq, self.ts, self.ssrc = struct.unpack('!BBHII', value[:12])
 self.marker, self.pt = (mpt & 0x80 and True or False), (mpt & 0x7f)

This is followed by an optional list of CSRCs.

 self.csrcs, value = ([] if (px & 0x0f == 0) else list(struct.unpack('!'+'I'*(px&0x0f), value[12:12+(px&0x0f)*4]))),
value[12+(px & 0x0f)*4:]

If an extension is present it is parsed into the extn property.

 if px & 0x10:
 xtype, xlen = struct.unpack('!HH', value[:4])
 self.extn, value = (xtype, value[4:4+xlen*4]), value[4+xlen*4:]
 else: self.extn = None

IMPLEMENTING SIP TELEPHONY

- 105 -

Finally, the payload is stored in the payload property. Note that if padding is present, the padding bytes are
not included in the payload.

 self.payload = value if px & 0x20 == 0 else value[:len(value)-ord(value[-1])]

Formatting

Formatting the RTP object into binary format can be done in a single Python statement as shown below. This
example shows the power of the programming language for this kind of implementations.

 def __repr__(self):
 return struct.pack('!BBHII', 0x80 | ((len(self.payload)%4 != 0) and 0x20 or 0x00) | (self.extn and 0x10 or 0x00) |
(len(self.csrcs) > 15 and 15 or len(self.csrcs)), \
 (self.pt & 0x7f) | (self.marker and 1 or 0) << 7, (self.seq & 0xffff), self.ts, self.ssrc) \
 + ''.join(struct.pack('!I', x) for x in self.csrcs[:16]) \
 + ('' if not self.extn else (struct.pack('!HH', self.extn[0] & 0xffff, len(self.extn[1])/4) + self.extn[1])) \
 + self.payload \
 + ('' if (len(self.payload) % 4 == 0) else ('\x00'*(4-len(self.payload)%4-1) + struct.pack('!B', 4-
len(self.payload)%4)))

RTCP packet

RTCP packet: A control packet consisting of a fixed header part similar to that of RTP data packets, followed by
structured elements that vary depending upon the RTCP packet type. Typically, multiple RTCP packets are sent
together as a compound RTCP packet in a single packet of the underlying protocol; this is enabled by the length
field in the fixed header of each RTCP packet.

Usage

Let’s assume that the RTCP class implements a compound RTCP packet. For representing an individual
packet or a sub-packet we assume the nested class RTCP.packet. As with an RTP packet we would like to
be able to create an RTCP packet using individual header components. The following example creates a new
sender report packet.

>>> sr = RTCP.packet(pt=RTCP.SR, ssrc=1, ntp=2, ts=3, pktcount=4, octcount=5, reports=[], extn=None)

Similarly, we can create the receiver report with two report elements as follows:

>>> r1 = RTCP.packet(ssrc=1, flost=2, clost=3, hseq=4, jitter=5, lsr=6, dlsr=7)
>>> r2 = RTCP.packet(ssrc=8, flost=9, clost=10, hseq=11, jitter=12, lsr=13, dlsr=14)
>>> rr = RTCP.packet(pt=RTCP.RR, ssrc=1, reports=[r1, r2])

As you can see, the RTCP.packet class can be used for many purposes. It defines dynamic attribute as
well as container syntax for the properties, similar to the SDP class implemented in earlier chapter.

- 106 -

The RTCP SDES packet can be created as follows. Each item is a tuple, with a list of attributes such as
CNAME, NAME, PHONE, etc.

>>> item1 = (1, [(RTCP.CNAME, 'kundan@example.net'), (RTCP.NAME, 'Kundan Singh'), (RTCP.EMAIL,
'kundan@example.net'), (RTCP.PHONE, '9176216392')])
>>> item2 = (2, [(RTCP.CNAME, 'henning@example.net'),])
>>> sdes = RTCP.packet(pt=RTCP.SDES, items=[item1, item2])

An RTCP BYE packet can be created as follows.

>>> bye = RTCP.packet(pt=RTCP.BYE, ssrcs=[1,2,3], reason='disconnecting')

The compound RTCP packet, with list semantics, can be created from these individual packets by supplying
the list of individual packets.

>>> p1 = RTCP([sr, rr, sdes, bye])

For parsing an RTCP packet, you can construct the object using a single binary string argument. For
example, we create p2 by formatting and parsing back the original compound packet p1.

>>> p2 = RTCP(str(p1))

Let’s walk through some more functions in RTCP packet. If you know the number of individual packets in
the compound packet, you can use the list semantics on the compound packet to extract the individual packet.
For example,

 >>> sr, rr, sdes, bye = tuple(p2)

We can also access the various properties of the objects or sub-objects, either with attribute or with container
access. Some examples follow, the results of which you can compare with the original values we set in our
exercise.

 >>> print sr.pt, sr.ssrc, sr.ntp, sr.ts, sr.pktcount, sr.octcount
 200 1 2.0 3 4 5
 >>> print rr.pt, rr.ssrc, [(x.ssrc, x.flost, x.clost, x.hseq, x.jitter, x.lsr, x.dlsr) for x in rr.reports]
 201 1 [(1, 2, 3, 4, 5, 6, 7), (8, 9, 10, 11, 12, 13, 14)]
 >>> print sdes.pt
 202
 >>> for item in sdes.items:
 ... print 'ssrc=', item[0]
 ... for n,v in item[1]: print '',n,'=',v

IMPLEMENTING SIP TELEPHONY

- 107 -

 ssrc= 1
 1 = kundan@example.net
 2 = Kundan Singh
 3 = kundan@example.net
 4 = 9176216392
 ssrc= 2
 1 = henning@example.net
 >>> print bye.pt, bye.ssrcs, bye.reason
 203 [1, 2, 3] disconnecting

Properties

Let’s implement the RTCP class as a sub-class of list, so that it inherits the list semantics and syntax for
representing the compound packet.

class RTCP(list):

The packet types and attribute types are defines are constants as per the specification.

 SR, RR, SDES, BYE, APP = range(200, 205) # various packet types
 CNAME, NAME, EMAIL, PHONE, LOC, TOOL, NOTE, PRIV = range(1, 9)

The nested class packet is similar to our attrs class in module rfc4566. It is used as a generic class for
individual packet or report. It exposes both container and attribute interface. The construction can be done by
supplying the named parameters. The attribute names are case-sensitive, unlike attrs.

 class packet(object):
 def __init__(self, **kwargs):
 for n,v in kwargs.items(): self[n] = v
 def __getattr__(self, name): return self.__getitem__(name)
 def __getitem__(self, name): return self.__dict__.get(name, None)
 def __setitem__(self, name, value): self.__dict__[name] = value
 def __contains__(self, name): return name in self.__dict__

Parsing

If a value is supplied to the constructor of RTCP object, and the value is a list, then it just gets appended
to the compound packet. It assumes that the list contained the individual RTCP packets.

 def __init__(self, value=None): # parse the compound RTCP packet.
 if isinstance(value, list):

- 108 -

 for v in value: self.append(v) # just append the list of packets
 return

Otherwise, we parse each individual packet from the binary string value.

 while value and len(value)>0:
 p = RTCP.packet() # individual RTCP packet

The first four-bytes contain the necessary information such as version number, packet type and length. We
validate for the version and packet type and throw an error if they are invalid.

 px, p.pt, plen = struct.unpack('!BBH', value[:4])
 if px & 0xC0 != 0x80: raise ValueError, 'RTP version must be 2'
 if p.pt < 200 or p.pt >= 205: raise ValueError, 'Not an RTCP packet type %d'%(p.pt)

Based on the length extracted earlier, we extract the current packet, remove the optional padding, and then
based on the packet type perform further parsing.

 data, value = value[4:4+plen*4], value[4+plen*4:] # data for this packet, value for next
 if px & 0x20: data = data[:len(data)-ord(data[-1])] # remove padding

The sender report and receiver report have initial headers followed by list of report items. Each report item is
parsed into RTCP.packet item.

 if p.pt == RTCP.SR or p.pt == RTCP.RR:
 if p.pt == RTCP.SR:
 p.ssrc, ntp1, ntp2, p.ts, p.pktcount, p.octcount = struct.unpack('!IIIIII', data[:24])
 p.ntp = ntp2time((ntp1, ntp2))
 data = data[24:]
 else:
 p.ssrc, = struct.unpack('!I', data[:4])
 data = data[4:]
 p.reports = []
 for i in range(px&0x1f):
 r = RTCP.packet()
 r.ssrc, lost, r.hseq, r.jitter, r.lsr, r.dlsr = struct.unpack('!IIIIII', data[:24])
 r.flost, r.clost = (lost >> 24) & 0x0ff, (lost & 0x0ffffff)
 p.reports.append(r)
 data = data[24:]
 p.extn = data if data else None

The source description packet has list of items, where each item describes a single source (SSRC). Each item
has list of description elements which are type-value tuples.

 elif p.pt == RTCP.SDES:
 p.items = []
 for i in range(0, px&0x1f):
 ssrc, = struct.unpack('!I', data[:4])

IMPLEMENTING SIP TELEPHONY

- 109 -

 items = []
 data, count = data[4:], 0
 while len(data)>0:
 itype, ilen = struct.unpack('!BB', data[:2])
 count += (2 + ilen)
 ivalue, data = data[2:2+ilen], data[2+ilen:]
 if itype == 0: break
 items.append((itype, ivalue))
 if count % 4 != 0: data = data[(4-count%4):] # ignore padding for the chunk
 p.items.append((ssrc, items))

The termination (BYE) packet has list of sources that are terminating the session.

 elif p.pt == RTCP.BYE:
 p.ssrcs, p.reason = [], None
 for i in range(0, px & 0x01f):
 ssrc, = struct.unpack('!I', data[:4])
 p.ssrcs.append(ssrc)
 data = data[4:]
 if data and len(data)>0:
 rlen, = struct.unpack('!B', data[:1])
 p.reason = data[1:1+rlen] # no need to ignore padding, it already gets ignored when we use next packet

The application defined packet the source identifier, name and data.

 elif p.pt == RTCP.APP:
 p.subtype = px&0x1f
 p.ssrc, p.name = struct.unpack('!I4s', data[:8])
 p.data = data[8:]
 if not p.data: p.data = None

Any other packet type’s raw data is stored as it is.

 else: # just store the raw data
 p.subtype = px&0x1f
 p.data = data[4:]

Once an individual packet is parsed, it is appended to the RTCP compound packet list.

 self.append(p)

Formatting

Formatting a compound RTCP packet iterates over all the packets and formats them. The pack and unpack
operations for parsing and formatting are dual of each other.

- 110 -

 def __str__(self):
 result = ''
 for p in self:
 count, value = 0, ''
 if p.pt == RTCP.SR or p.pt == RTCP.RR:
 if p.pt == RTCP.SR:
 ntp1, ntp2 = time2ntp(p.ntp)
 value = struct.pack('!IIIIII', p.ssrc, ntp1, ntp2, p.ts, p.pktcount, p.octcount)
 else: value = struct.pack('!I', p.ssrc)
 count = len(p.reports)
 for r in p.reports:
 value += struct.pack('!IIIIII', r.ssrc, (r.flost << 24) | (r.clost & 0x0ffffff), r.hseq, r.jitter, r.lsr, r.dlsr)
 if p.extn: value += p.extn
 elif p.pt == RTCP.SDES:
 count = len(p.items)
 for ssrc,items in p.items:
 chunk = struct.pack('!I', ssrc)
 for n,v in items:
 chunk += struct.pack('!BB', n, len(v)>255 and 255 or len(v)) + v[:256]
 chunk += struct.pack('!BB', 0, 0) # to indicate end of items.
 if len(chunk)%4!=0: chunk += '\x00'*(4-len(chunk)%4)
 value += chunk
 elif p.pt == RTCP.BYE:
 count = len(p.ssrcs)
 for ssrc in p.ssrcs: value += struct.pack('!I', ssrc)
 if p.reason and len(p.reason)>0: value += struct.pack('!B', len(p.reason)>255 and 255 or len(p.reason)) +
p.reason[:256]
 elif p.pt == RTCP.APP:
 count = p.subtype
 value += struct.pack('!I4s', p.ssrc, p.name) + (p.data if p.data else '')
 else: # just add the raw data
 count = p.subtype
 value += p.data
 length = len(value)/4 + (1 if len(value)%4 != 0 else 0)
 result += struct.pack('!BBH', 0x80 | (len(value)%4 != 0 and 0x20 or 0x00) | (count & 0x1f), p.pt, length) \
 + value + ('' if (len(value) % 4 == 0) else ('\x00'*(4-len(value)%4-1) + struct.pack('!B', 4-len(value)%4)))
 # TODO: we do padding in each packet, instead of only in last.
 return result

Constants

The specification defines the following constants that we need in our implementation.

RTP_SEQ_MOD = (1<<16)
MAX_DROPOUT = 3000
MAX_MISORDER = 100
MIN_SEQUENTIAL = 2

IMPLEMENTING SIP TELEPHONY

- 111 -

Source

A source in a RTP-based session is implemented using the Source class. It represents both the local
member as well as the remote members. The SSRC and SDES’s CNAME must be unique in a session.

class Source(object):

Properties

We can create a new member for the given SSRC as follows.

>>> m = Source(1, [(RTCP.CNAME, 'kundan@example.net'), (RTCP.NAME, 'Kundan Singh')], ('127.0.0.1', 8000))
>>> print m
<Source ssrc=1 items=[(1, 'kundan@example.net'), (2, 'Kundan Singh')] address=('127.0.0.1', 8000) lost=0 fraction=0
pktcount=0 octcount=0 maxseq=0 badseq=0 cycles=0 baseseq=0 probation=0 received=0 expectedprior=0
receivedprior=0 transit=0 jitter=0 lastts=None lastntp=None rtcpdelay=None>

The specification defines various properties for a source, which we use in our implementation. We also have
additional properties as needed in our implementation.

From RFC3550 p.78 –

/*
 * Per-source state information
 */
typedef struct {
 u_int16 max_seq; /* highest seq. number seen */
 u_int32 cycles; /* shifted count of seq. number cycles */
 u_int32 base_seq; /* base seq number */
 u_int32 bad_seq; /* last 'bad' seq number + 1 */
 u_int32 probation; /* sequ. packets till source is valid */
 u_int32 received; /* packets received */
 u_int32 expected_prior; /* packet expected at last interval */
 u_int32 received_prior; /* packet received at last interval */
 u_int32 transit; /* relative trans time for prev pkt */
 u_int32 jitter; /* estimated jitter */
 /* ... */
} source;

 def __init__(self, ssrc, items=[], address=None):
 self.ssrc, self.items, self.address = ssrc, items, address
 self.lost = self.fraction = self.pktcount = self.octcount = self.timeout = 0
 self.maxseq = self.badseq = self.cycles = self.baseseq = self.probation = self.received = self.expectedprior =
self.receivedprior = self.transit = self.jitter = 0 # based on RFC 3550's source structure
 self.lastts = self.lastntp = self.rtcpdelay = None

The string representation is used for debugging purpose, which prints all the attributes of the object.

- 112 -

 def __repr__(self):
 props = ('ssrc', 'items', 'address', 'lost', 'fraction', 'pktcount', 'octcount', \
 'maxseq', 'badseq', 'cycles', 'baseseq', 'probation', 'received', \
 'expectedprior', 'receivedprior', 'transit', 'jitter', 'lastts', \
 'lastntp', 'rtcpdelay')
 return ('<Source ' + ' '.join([p+'=%r' for p in props]) + '>')%tuple([(eval('self.%s'%p)) for p in props])

Initializing sequence

When a new RTP packet is received, the sequence number of the received packet is used to initialize the
sequence number of the source. The specification defines this as follows, which we port to our
implementation.

void init_seq(source *s, u_int16 seq)
{
 s->base_seq = seq;
 s->max_seq = seq;
 s->bad_seq = RTP_SEQ_MOD + 1; /* so seq == bad_seq is false */
 s->cycles = 0;
 s->received = 0;
 s->received_prior = 0;
 s->expected_prior = 0;
 /* other initialization */
}

 def initseq(self, seq):
 self.baseseq = self.maxseq = seq
 self.badseq = seq - 1
 self.cycles = self.received = self.receivedprior = self.expectedprior = 0
 return self

This method can be tested as follows.

>>> print Source(ssrc=1).initseq(10)
<Source ssrc=1 items=[] address=None lost=0 fraction=0 pktcount=0 octcount=0 maxseq=10 badseq=9 cycles=0
baseseq=10 probation=0 received=0 expectedprior=0 receivedprior=0 transit=0 jitter=0 lastts=None lastntp=None
rtcpdelay=None>

Newly found source

When a new source is heard for the first time, that is, its SSRC identifier is not in the table, and the per-source
state is allocated for it, s->probation is set to the number of sequential packets required before declaring a source
valid (parameter MIN_SEQUENTIAL) and other variables are initialized:

 init_seq(s, seq);
 s->max_seq = seq - 1;
 s->probation = MIN_SEQUENTIAL;

IMPLEMENTING SIP TELEPHONY

- 113 -

A non-zero s->probation marks the source as not yet valid so the state may be discarded after a short timeout
rather than a long one.

 def newfound(self, seq):
 self.initseq(seq)
 self.maxseq, self.probation = seq-1, MIN_SEQUENTIAL
 return self

This method can be tested as follows.

 >>> print Source(ssrc=1).newfound(10)
 <Source ssrc=1 items=[] address=None lost=0 fraction=0 pktcount=0 octcount=0 maxseq=9 badseq=9 cycles=0
baseseq=10 probation=2 received=0 expectedprior=0 receivedprior=0 transit=0 jitter=0 lastts=None lastntp=None
rtcpdelay=None>

Updating sequence on received packets

The specification defines the following C function to update the source properties based on the received RTP
packet’s sequence number. We port this to our implementation below.

int update_seq(source *s, u_int16 seq)
{
 u_int16 udelta = seq - s->max_seq;
 const int MAX_DROPOUT = 3000;
 const int MAX_MISORDER = 100;
 const int MIN_SEQUENTIAL = 2;

 /*
 * Source is not valid until MIN_SEQUENTIAL packets with
 * sequential sequence numbers have been received.
 */
 if (s->probation) {
 /* packet is in sequence */
 if (seq == s->max_seq + 1) {
 s->probation--;
 s->max_seq = seq;
 if (s->probation == 0) {
 init_seq(s, seq);
 s->received++;
 return 1;
 }
 } else {
 s->probation = MIN_SEQUENTIAL - 1;
 s->max_seq = seq;
 }
 return 0;
 } else if (udelta < MAX_DROPOUT) {
 /* in order, with permissible gap */
 if (seq < s->max_seq) {

- 114 -

 /*
 * Sequence number wrapped - count another 64K cycle.
 */
 s->cycles += RTP_SEQ_MOD;
 }
 s->max_seq = seq;
 } else if (udelta <= RTP_SEQ_MOD - MAX_MISORDER) {
 /* the sequence number made a very large jump */
 if (seq == s->bad_seq) {
 /*
 * Two sequential packets -- assume that the other side
 * restarted without telling us so just re-sync
 * (i.e., pretend this was the first packet).
 */
 init_seq(s, seq);
 }
 else {
 s->bad_seq = (seq + 1) & (RTP_SEQ_MOD-1);
 return 0;
 }
 } else {
 /* duplicate or reordered packet */
 }
 s->received++;
 return 1;
}

 def updateseq(self, seq):
 udelta = seq - self.maxseq
 if self.probation > 0:
 if seq == self.maxseq+1:
 self.probation, self.maxseq = self.probation - 1, seq
 if self.probation == 0:
 self.initseq(seq)
 self.received = self.received + 1
 return self # True
 else:
 self.probation, self.maxseq = MIN_SEQUENTIAL-1, seq # at least next one packet should be in sequence
 return self # False
 elif udelta < MAX_DROPOUT: # in order, with permissible gap
 if seq < self.maxseq: self.cycles += RTP_SEQ_MOD
 self.maxseq = seq
 elif udelta <= RTP_SEQ_MOD - MAX_MISORDER: # the seq made a very large jump
 if seq == self.badseq: self.initseq(seq) # probably the other side reset the seq
 else:
 self.badseq = (seq + 1) & (RTP_SEQ_MOD-1)
 return self # False
 self.received = self.received + 1
 return self # True

This can be tested as follows.

>>> print Source(1).newfound(10).updateseq(12).updateseq(13) # simulate loss of 11

IMPLEMENTING SIP TELEPHONY

- 115 -

<Source ssrc=1 items=[] address=None lost=0 fraction=0 pktcount=0 octcount=0 maxseq=13 badseq=12 cycles=0
baseseq=13 probation=0 received=1 expectedprior=0 receivedprior=0 transit=0 jitter=0 lastts=None lastntp=None
rtcpdelay=None>

Estimating the interarrival jitter

The code fragments below implement the algorithm given in Section 6.4.1 for calculating an estimate of the
statistical variance of the RTP data interarrival time to be inserted in the interarrival jitter field of reception reports.
The inputs are r->ts, the timestamp from the incoming packet, and arrival, the current time in the same units.
Here s points to state for the source; s->transit holds the relative transit time for the previous packet, and s->jitter
holds the estimated jitter. The jitter field of the reception report is measured in timestamp units and expressed as
an unsigned integer, but the jitter estimate is kept in a floating point. As each data packet arrives, the jitter
estimate is updated:

 int transit = arrival - r->ts;
 int d = transit - s->transit;
 s->transit = transit;
 if (d < 0) d = -d;
 s->jitter += (1./16.) * ((double)d - s->jitter);

When a reception report block (to which rr points) is generated for this member, the current jitter estimate is
returned:

 rr->jitter = (u_int32) s->jitter;
The following method updates the jitter based on the timestamp ts and arrival timestamp (also in ts
units).

 def updatejitter(self, ts, arrival):
 transit = int(arrival - ts)
 d, self.transit = int(math.fabs(transit - self.transit)), transit
 self.jitter += (1/16.) * (d-self.jitter)
 return self

This can be tested as follows

>>> s = Source(1).newfound(10).updatejitter(1000, 0).updatejitter(1160, 160).updatejitter(1330, 320)
>>> print s.transit, int(s.jitter)
-1010 55

Determining the number of packets expected and lost

In order to compute packet loss rates, the number of RTP packets expected and actually received from each
source needs to be known, using per-source state information defined in struct source referenced via pointer s in
the code below. The number of packets received is simply the count of packets as they arrive, including any late
or duplicate packets. The number of packets expected can be computed by the receiver as the difference
between the highest sequence number received (s->max_seq) and the first sequence number received (s-
>base_seq). Since the sequence number is only 16 bits and will wrap around, it is necessary to extend the

- 116 -

highest sequence number with the (shifted) count of sequence number wraparounds (s->cycles). Both the
received packet count and the count of cycles are maintained the RTP header validity check routine in Appendix
A.1.

 extended_max = s->cycles + s->max_seq;
 expected = extended_max - s->base_seq + 1;

The number of packets lost is defined to be the number of packets expected less the number of packets actually
received:

 lost = expected - s->received;

Since this signed number is carried in 24 bits, it should be clamped at 0x7fffff for positive loss or 0x800000 for
negative loss rather than wrapping around.

The fraction of packets lost during the last reporting interval (since the previous SR or RR packet was sent) is
calculated from differences in the expected and received packet counts across the interval, where expected_prior
and received_prior are the values saved when the previous reception report was generated:

 expected_interval = expected - s->expected_prior;
 s->expected_prior = expected;
 received_interval = s->received - s->received_prior;
 s->received_prior = s->received;
 lost_interval = expected_interval - received_interval;
 if (expected_interval == 0 || lost_interval <= 0) fraction = 0;
 else fraction = (lost_interval << 8) / expected_interval;

The resulting fraction is an 8-bit fixed point number with the binary point at the left edge.

 def updatelostandexpected(self):
 extendedmax = self.cycles + self.maxseq
 expected = extendedmax - self.baseseq + 1
 self.lost = expected - self.received
 expectedinterval = expected - self.expectedprior
 self.expectedprior = expected
 receivedinterval = self.received - self.receivedprior
 self.receivedprior = self.received
 lostinterval = expectedinterval - receivedinterval
 if expectedinterval == 0 or lostinterval <= 0: self.fraction = 0
 else: self.fraction = (lostinterval << 8) / expectedinterval
 return self

This can be tested as follows.

>>> s = Source(1).newfound(10).updateseq(11).updateseq(12).updateseq(14).updatelostandexpected() # loss of 13
>>> print s.lost, s.fraction, s.expectedprior, s.receivedprior
1 85 3 2

To store the report properties in the Source object, the storereport method can be invoked.

 def storereport(self, fraction, lost, jitter, delay):
 self.fraction, self.lost, self.jitter, self.rtcpdelay = fraction, lost, jitter, delay
 return self

IMPLEMENTING SIP TELEPHONY

- 117 -

Timestamp conversion

The specification heavily uses the Network Time Protocol (NTP) time format. The NTP time has higher
resolution, and a different offset than the UNIX time that many operating systems provide. The offset can be
found in the NTP specification.

We define two methods: time2ntp and ntp2time, to convert between the UNIX time format and NTP
time format. Python’s time.time() method gives the current time UNIX time format. We use a tuple of
two values to represent NTP time format. The first value is the number of seconds and the second value is the
fraction. These values are readily usable in our RTP and RTCP implementation wherever NTP time format is
desired.

To convert the UNIX time 0.5 to NTP you can do the following.

 >>> print time2ntp(0.5)
 (2208988800L, 2147483648L)

Similarly to convert from NTP time tuple to the UNIX time format you can do the following.

 >>> print ntp2time(time2ntp(10.5))
 10.5

Once we know the offset and conversion factor, the conversion is straightforward as defined below.

def time2ntp(value):
 value = value + 2208988800
 return (int(value), int((value-int(value)) * 4294967296.))

def ntp2time(value):
 return (value[0] + value[1] / 4294967296.) - 2208988800

RTP Session

From RFC3550 p.9 – RTP session: An association among a set of participants communicating with RTP. A
participant may be involved in multiple RTP sessions at the same time. In a multimedia session, each medium is
typically carried in a separate RTP session with its own RTCP packets unless the the encoding itself multiplexes
multiple media into a single data stream. A participant distinguishes multiple RTP sessions by reception of
different sessions using different pairs of destination transport addresses, where a pair of transport addresses
comprises one network address plus a pair of ports for RTP and RTCP. All participants in an RTP session may

- 118 -

share a common destination transport address pair, as in the case of IP multicast, or the pairs may be different
for each participant, as in the case of individual unicast network addresses and port pairs. In the unicast case, a
participant may receive from all other participants in the session using the same pair of ports, or may use a
distinct pair of ports for each.

The distinguishing feature of an RTP session is that each maintains a full, separate space of SSRC identifiers
(defined next). The set of participants included in one RTP session consists of those that can receive an SSRC
identifier transmitted by any one of the participants either in RTP as the SSRC or a CSRC (also defined below) or
in RTCP. For example, consider a three-party conference implemented using unicast UDP with each participant
receiving from the other two on separate port pairs. If each participant sends RTCP feedback about data
received from one other participant only back to that participant, then the conference is composed of three
separate point-to-point RTP sessions. If each participant provides RTCP feedback about its reception of one
other participant to both of the other participants, then the conference is composed of one multi-party RTP
session. The latter case simulates the behavior that would occur with IP multicast communication among the
three participants.

The RTP framework allows the variations defined here, but a particular control protocol or application design will
usually impose constraints on these variations.

Application interface

Let’s assume that the Session class implements an RTP session and presents the high level application
interface. The application installs itself in the session when constructing a new session. The session object
invokes various callbacks on the application to notify important events. The application first constructs the
session object then starts the session. When the session is completed it must stop the session.

session = Session(self, …) # install by supplying itself to session
session.start()
…
session.stop()

When the session is starting or stopping, it invokes the appropriate callbacks on the application, hence the
application can implement the following to get notified of these events.

def starting(self, session): …
def stopping(self, session): …

Network interface: The application also implements the network interface. The session invokes the
following callback when it actually wants to send some data on the RTP or RTCP socket. The application
should use the network interface to actually send these.

def sendRTP(self, data): …
def sendRTCP(self, data): …

Similarly, when the application receives some data from the network interface, it invokes the appropriate
methods on the session to transfer the data to the session.

IMPLEMENTING SIP TELEPHONY

- 119 -

session.receivedRTP(data, src, dest)
session.receivedRTCP(data, src, dest)

Media data: When the application wants to send some media data in the session, it invokes the send
methods by supplying the media payload, and optional timestamp, marker and payload type arguments.
Since the media source is the best place to keep the timestamp information, we let the application supply the
timestamp to the session.

session.send(payload, timestamp, marker, payloadType)

When the session has some RTP packet, it invokes the following callback to inform the application about the
packet. The application can access the various RTP headers including the timestamp and payload
information.

def received(self, member, packet):
 print “payload length”, len(packet.payload)
 … # process the packet

The member argument is of type Source and identifies the source of the packet. The packet argument is of
type RTP.

Timer: The session needs a timer implementation. However, to keep the software architecture independent
of any asynchronous activity, we delegate the timer implementation to the application. This is similar to the
motivation we used in the SIP library implementation earlier. Hence the application must implement the
createTimer method to supply a timer object when the session demands it.

def createTimer(self, app):
 … # see the timer in the “Session Initiation Protocol” chapter.

Now that we have defined the example usage of the session interface, which forms the high level interface of
the RTP implementation, let’s move on to the implementation of the Session class.

Properties

The Session class which implements the RTP session is the main control implementation to manager a
single session. We define the following properties in a session. The optional payload type, pt, and sampling
rate, rate, control the payload type and sampling rate of the outgoing RTP packet. The default value of pt
is 96 representing a dynamic payload type, and that of rate is 8000 Hz. The bandwidth property
specifies the total session bandwidth and defaults to 64000 (bits/second). The fraction property specifies
the fraction of bandwidth to use for RTCP and defaults to 0.05 indicating 5% of the total bandwidth. The
optional member property refers to the Source object for this member. By default it constructs a new
source member. The ssrc and cname properties are useful only when constructing a new source member,
instead of using a random number and name. The seq0 and ts0 optional properties control the initial
sequence number and timestamp in outgoing RTP packets, instead of using random numbers by default.

- 120 -

The constructor can take these properties as optional named arguments. The first argument is a reference to
the application, so that the RTP implementation can invoke callbacks to signal events to the application.

class Session(object):
 def __init__(self, app, **kwargs):
 self.app, self.pt, self.rate, self.bandwidth, self.fraction, self.member = \
 app, kwargs.get('pt', 96), kwargs.get('rate', 8000), kwargs.get('bandwidth', 64000), kwargs.get('fraction', 0.05),
kwargs.get('member', None)
 if not self.member:
 ssrc = kwargs.get('ssrc', random.randint(0, 2**32))
 cname = kwargs.get('cname', '%d@%s'%(ssrc, getlocaladdr()))
 self.member = Source(ssrc=ssrc, items=[(RTCP.CNAME, cname)])
 self.seq0, self.ts0 = kwargs.get('seq0', self.randint(0, 2**16)), kwargs.get('ts0', self.randint(0, 2**32))
 self.seq = self.ts = self.ts1 = 0 # recent seq and ts. ts1 is base time.
 self.ntp = self.ntp1 = self.tc # recent NTP time and base time.

 When constructing a session we also initialize some statistics as below.

 self.rtpsent = self.rtcpsent = self.byesent = self.running = False

From RFC3550 p.29 – A session participant must maintain several pieces of state:

tp: the last time an RTCP packet was transmitted;
tc: the current time;
tn: the next scheduled transmission time of an RTCP packet;
pmembers: the estimated number of session members at the time tn was last recomputed;
members: the most current estimate for the number of session members;
senders: the most current estimate for the number of senders in the session;
rtcp_bw: The target RTCP bandwidth, i.e., the total bandwidth that will be used for RTCP packets by all
members of this session, in octets per second. This will be a specified fraction of the "session bandwidth"
parameter supplied to the application at startup.
we_sent: Flag that is true if the application has sent data since the 2nd previous RTCP report was transmitted.
avg_rtcp_size: The average compound RTCP packet size, in octets, over all RTCP packets sent and received
by this participant. The size includes lower-layer transport and network protocol headers (e.g., UDP and IP).
initial: Flag that is true if the application has not yet sent an RTCP packet.

 self.tp = self.tn = 0 # tp=last RTCP transmit time, tc=current time, tn=next RTCP scheduled time
 self.members, self.senders = dict(), dict() # TODO: this should be a smart set+map data structure
 self.pmembers = 0
 self.rtcpbw = self.bandwidth*self.fraction
 self.wesent, self.initial, self.avgrtcpsize = False, True, 200

The randint method generates a random number in the given range, which defaults to the four-bytes
number range. TODO: we should modify this to use the algorithm as defined in the RFC instead of using the
random module.

 def randint(self, low=0, high=0x100000000):
 return random.randint(low, high) # Return a random number between [low, high).

IMPLEMENTING SIP TELEPHONY

- 121 -

The tc read-only property returns the current UNIX time in double.

 @property
 def tc(self):
 return time.time()

The tsnow read-only property returns the current time in RTP timestamp unit.

 @property
 def tsnow(self):
 return int(self.ts + (self.tc - self.ntp)*((self.ts - self.ts1) / (self.ntp - self.ntp1))) & 0xffffffff

Starting and stopping

We implement two methods, start and stop. The application can invoke these methods to control the
session. The session is set to be in running state when started, until it is stopped. A running session
receives incoming packets, and periodically sends outgoing RTCP packets. The sending of RTP packets is
controlled by the application.

Calling the start method on an already running session has no effect.

 def start(self):
 if self.running: return # already running, don't run again.

When a session is started, we clear its membership state and packets statistics.

 self.senders.clear(); self.members.clear(); # add ourself in members.
 self.pmembers = 1
 self.members[self.member.ssrc] = self.member
 self.wesent = self.rtcpsent = False

Then we schedule the timer for sending out the RTCP packets. The timeout is adjusted every time an RTCP
packet is sent. The timeout handler schedules the next timer.

 delay = self.rtcpinterval(True) # compute first RTCP interval
 self.tp, self.tn = self.tc, self.tc + delay
 self.timer = timer = self.app.createTimer(self) # schedule a timer to send RTCP
 timer.start(delay*1000)

Finally, we set the state to be running, and inform the application that the session is starting by invoking
app.starting method.

 self.running = True

- 122 -

 self.app.starting(self)

When the application wants to close the session, it invokes the stop method. This stops sending and
receiving of the packets in this session. If the session is not already running then it has no effect.

 def stop(self, reason=''):
 if not self.running: return # not running already. Don't bother.

First we sent the RTCP BYE packet with the supplied reason property.

 sendBye(reason=reason)

Then we clear the membership state for this session.

 self.members.clear()
 self.senders.clear()
 self.pmembers = 0

Then we close any active timer for this session.

 if self.timer:
 self.timer.stop()
 self.timer = None

Finally we set the running state to be false, and inform the application by calling app.stopping
method.

 self.running = False
 self.app.stopping(self)

Sending and receiving RTP

When the application wants to send some RTP packet in this session, it invokes the send method. The
timestamp, marker and payload type can be set explicitly for each packet. The method just builds a new RTP
object with the supplied parameters and invokes the application callback app.sendRTP to actually send
the packet. It also updates the statistics as shown below.

 def send(self, payload='', ts=0, marker=False, pt=None):
 member = self.member
 member.pktcount = member.pktcount + 1
 member.octcount = member.octcount + len(payload)
 self.ts, self.ntp = ts, self.tc

IMPLEMENTING SIP TELEPHONY

- 123 -

 if self.ts1 == 0: self.ts1 = ts
 self.rtpsent = self.wesent = True

 if pt is None: pt = self.pt
 pkt = RTP(pt=pt, marker=marker, seq=self.seq0+self.seq, ts=self.ts0+ts, ssrc=member.ssrc, payload=payload)
 self.app.sendRTP(pkt)

 self.seq = self.seq + 1

When the network layer receives a new packet on the RTP port, the application should transfer the packet to
the Session object by invoking the receivedRTP method. The raw received data along with the source
and destination host-port tuples are supplied in this method. The method first parses the received data into an
RTP object.

 def receivedRTP(self, data, src, dest):
 p = RTP(data)

From RFC3550 p.31 – Receiving an RTP or Non-BYE RTCP Packet

When an RTP or RTCP packet is received from a participant whose SSRC is not in the member table, the SSRC
is added to the table, and the value for members is updated once the participant has been validated as described
in Section 6.2.1. The same processing occurs for each CSRC in a validated RTP packet.

When an RTP packet is received from a participant whose SSRC is not in the sender table, the SSRC is added
to the table, and the value for senders is updated.

For each compound RTCP packet received, the value of avg_rtcp_size is updated:

 avg_rtcp_size = (1/16) * packet_size + (15/16) * avg_rtcp_size

where packet_size is the size of the RTCP packet just received.

 member = None
 if p.ssrc not in self.members and self.running:
 member = self.members[p.ssrc] = Source(ssrc=p.ssrc).newfound(p.seq)
 elif self.running:
 member = self.members[p.ssrc]
 if p.ssrc not in self.senders and self.running:
 self.senders[p.ssrc] = self.members[p.ssrc]
 if member:
 member.received = member.received + 1
 member.timeout = 0
 member.address = src
 member.updateseq(p.seq)
 member.updatejitter(p.ts, self.tsnow)

Finally the method delivers the packet to the application by invoking the app.received callback.

- 124 -

 self.app.received(member, p)

Receiving RTCP

When the network layer receives a new packet on the RTCP port, the application should transfer the packet
to the Session object by invoking the receivedRTCP method. The raw received data along with the
source and destination host-port tuples are supplied in this method. The method first parses the received data
into an RTCP compound object. Then it processes each individual packet.

 def receivedRTCP(self, data, src, dest):
 for p in RTCP(data): # for each individual packet

From RFC3550 p.92 –

void OnReceive(packet p,
 event e,
 int *members,
 int *pmembers,
 int *senders,
 double *avg_rtcp_size,
 double *tp,
 double tc,
 double tn)
{
 /* What we do depends on whether we have left the group, and are
 * waiting to send a BYE (TypeOfEvent(e) == EVENT_BYE) or an RTCP
 * report. p represents the packet that was just received. */

 if (PacketType(p) == PACKET_RTCP_REPORT) {
 if (NewMember(p) && (TypeOfEvent(e) == EVENT_REPORT)) {
 AddMember(p);
 *members += 1;
 }
 *avg_rtcp_size = (1./16.)*ReceivedPacketSize(p) +
 (15./16.)*(*avg_rtcp_size);
 } else if (PacketType(p) == PACKET_RTP) {
 if (NewMember(p) && (TypeOfEvent(e) == EVENT_REPORT)) {
 AddMember(p);
 *members += 1;
 }
 if (NewSender(p) && (TypeOfEvent(e) == EVENT_REPORT)) {
 AddSender(p);
 *senders += 1;
 }
 } else if (PacketType(p) == PACKET_BYE) {
 *avg_rtcp_size = (1./16.)*ReceivedPacketSize(p) +
 (15./16.)*(*avg_rtcp_size);

 if (TypeOfEvent(e) == EVENT_REPORT) {
 if (NewSender(p) == FALSE) {
 RemoveSender(p);

IMPLEMENTING SIP TELEPHONY

- 125 -

 *senders -= 1;
 }
 if (NewMember(p) == FALSE) {
 RemoveMember(p);
 *members -= 1;
 }

 if (*members < *pmembers) {
 tn = tc +
 (((double) *members)/(*pmembers))*(tn - tc);
 *tp = tc -
 (((double) *members)/(*pmembers))*(tc - *tp);

 /* Reschedule the next report for time tn */

 Reschedule(tn, e);
 *pmembers = *members;
 }

 } else if (TypeOfEvent(e) == EVENT_BYE) {
 *members += 1;
 }
 }
}

 if p.pt == RTCP.SR or p.pt == RTCP.RR:
 if p.ssrc not in self.members and self.running:
 self.members[p.ssrc] = Source(ssrc=p.ssrc)
 member = self.members[p.ssrc] # identify the member
 if p.pt == RTCP.SR:
 member.lastts = p.ts
 member.lastntp = p.ntp
 member.timeout = 0
 for r in p.reports:
 if r.ssrc == self.member.ssrc:
 self.member.storereport(r.flost, r.clost, r.jitter, r.dlsr/65536.)
 break
 elif p.pt == RTCP.SDES:
 for ssrc,items in p.items:
 if ssrc not in self.members:
 member = self.members[ssrc] = Source(ssrc=ssrc)
 else:
 member = self.members[ssrc]
 member.items = items # override previous items list

From RFC3550 p.31 – Except as described in Section 6.3.7 for the case when an RTCP BYE is to be
transmitted, if the received packet is an RTCP BYE packet, the SSRC is checked against the member table. If
present, the entry is removed from the table, and the value for members is updated. The SSRC is then checked
against the sender table. If present, the entry is removed from the table, and the value for senders is updated.

Furthermore, to make the transmission rate of RTCP packets more adaptive to changes in group membership,
the following "reverse reconsideration" algorithm SHOULD be executed when a BYE packet is received that
reduces members to a value less than pmembers:

 o The value for tn is updated according to the following formula:

- 126 -

 tn = tc + (members/pmembers) * (tn - tc)

 o The value for tp is updated according the following formula:

 tp = tc - (members/pmembers) * (tc - tp).

 o The next RTCP packet is rescheduled for transmission at time tn, which is now earlier.

 o The value of pmembers is set equal to members.

This algorithm does not prevent the group size estimate from incorrectly dropping to zero for a short time due to
premature timeouts when most participants of a large session leave at once but some remain. The algorithm
does make the estimate return to the correct value more rapidly. This situation is unusual enough and the
consequences are sufficiently harmless that this problem is deemed only a secondary concern.

 elif p.pt == RTCP.BYE:
 for ssrc in p.ssrcs:
 if ssrc in self.members:
 del self.members[ssrc]
 if ssrc in self.senders:
 del self.senders[ssrc]
 if self.running:
 self.timer.stop()
 self.tn = self.tc + (len(self.members)/self.pmembers) * (self.tn-self.tc)
 self.tp = self.tc - (len(self.members)/self.pmembers) * (self.tc-self.tp)
 self.timer.start((self.tn - self.tc) * 1000)
 self.pmembers = len(self.pmembers)

For each compound RTCP packet received, the value of avg_rtcp_size is updated:

 avg_rtcp_size = (1/16) * packet_size + (15/16) * avg_rtcp_size

where packet_size is the size of the RTCP packet just received.

 self.avgrtcpsize = (1/16.)*len(data) + (15/16.)*self.avgrtcpsize

Computing the RTCP transmission internal.

From RFC3550 p.29 – To maintain scalability, the average interval between packets from a session participant
should scale with the group size. This interval is called the calculated interval. It is obtained by combining a
number of the pieces of state described above. The calculated interval T is then determined as follows:

1. If the number of senders is less than or equal to 25% of the membership (members), the interval depends
on whether the participant is a sender or not (based on the value of we_sent). If the participant is a sender
(we_sent true), the constant C is set to the average RTCP packet size (avg_rtcp_size) divided by 25% of
the RTCP bandwidth (rtcp_bw), and the constant n is set to the number of senders. If we_sent is not true,
the constant C is set to the average RTCP packet size divided by 75% of the RTCP bandwidth. The
constant n is set to the number of receivers (members - senders). If the number of senders is greater
than 25%, senders and receivers are treated together. The constant C is set to the average RTCP packet
size divided by the total RTCP bandwidth and n is set to the total number of members. As stated in
Section 6.2, an RTP profile MAY specify that the RTCP bandwidth may be explicitly defined by two
separate parameters (call them S and R) for those participants which are senders and those which are
not. In that case, the 25% fraction becomes S/(S+R) and the 75% fraction becomes R/(S+R). Note that if
R is zero, the percentage of senders is never greater than S/(S+R), and the implementation must avoid
division by zero.

IMPLEMENTING SIP TELEPHONY

- 127 -

2. If the participant has not yet sent an RTCP packet (the variable initial is true), the constant Tmin is set to
2.5 seconds, else it is set to 5 seconds.

3. The deterministic calculated interval Td is set to max(Tmin, n*C).

4. The calculated interval T is set to a number uniformly distributed between 0.5 and 1.5 times the
deterministic calculated interval.

5. The resulting value of T is divided by e-3/2=1.21828 to compensate for the fact that the timer
reconsideration algorithm converges to a value of the RTCP bandwidth below the intended average.

This procedure results in an interval which is random, but which, on average, gives at least 25% of the RTCP
bandwidth to senders and the rest to receivers. If the senders constitute more than one quarter of the
membership, this procedure splits the bandwidth equally among all participants, on average.

 def rtcpinterval(self, initial=False):
 if len(self.senders) < 0.25*len(self.members):
 if self.wesent: C, n = self.avgrtcpsize / (0.25*self.rtcpbw), len(self.senders)
 else: C, n = self.avgrtcpsize / (0.75*self.rtcpbw), len(self.members) - len(self.senders)
 else: C, n = self.avgrtcpsize / self.rtcpbw, len(self.members)
 return (min(initial and 2.5 or 5.0, n*C)) * (random.random() + 0.5) / 1.21828

Sendind RTCP

When the RTCP timeout expires, we send the compound RTCP packet as necessary.

From RFC3550 p.90 –

void OnExpire(event e,
 int members,
 int senders,
 double rtcp_bw,
 int we_sent,
 double *avg_rtcp_size,
 int *initial,
 time_tp tc,
 time_tp *tp,
 int *pmembers)
{
 /* This function is responsible for deciding whether to send an
 * RTCP report or BYE packet now, or to reschedule transmission.
 * It is also responsible for updating the pmembers, initial, tp,
 * and avg_rtcp_size state variables. This function should be
 * called upon expiration of the event timer used by Schedule().
 */

 double t; /* Interval */
 double tn; /* Next transmit time */

 /* In the case of a BYE, we use "timer reconsideration" to
 * reschedule the transmission of the BYE if necessary */
 if (TypeOfEvent(e) == EVENT_BYE) {
 t = rtcp_interval(members,
 senders,

- 128 -

 rtcp_bw,
 we_sent,
 *avg_rtcp_size,
 *initial);
 tn = *tp + t;
 if (tn <= tc) {
 SendBYEPacket(e);
 exit(1);
 } else {
 Schedule(tn, e);
 }

 } else if (TypeOfEvent(e) == EVENT_REPORT) {
 t = rtcp_interval(members,
 senders,
 rtcp_bw,
 we_sent,
 *avg_rtcp_size,
 *initial);
 tn = *tp + t;
 if (tn <= tc) {
 SendRTCPReport(e);
 *avg_rtcp_size = (1./16.)*SentPacketSize(e) +
 (15./16.)*(*avg_rtcp_size);
 *tp = tc;

 /* We must redraw the interval. Don't reuse the
 one computed above, since its not actually
 distributed the same, as we are conditioned
 on it being small enough to cause a packet to
 be sent */

 t = rtcp_interval(members,
 senders,
 rtcp_bw,
 we_sent,
 *avg_rtcp_size,
 *initial);

 Schedule(t+tc,e);
 *initial = 0;
 } else {
 Schedule(tn, e);
 }
 *pmembers = members;
 }
}

 def timedout(self, timer):
 if not self.running: # need to send BYE
 delay = self.rtcpinterval()
 self.tn = self.tp + delay
 if self.tn <= self.tc:
 self.sendBYE()
 else:
 self.timer.start((self.tn - self.tc) * 1000)

IMPLEMENTING SIP TELEPHONY

- 129 -

 else: # need to send report
 delay = self.rtcpinterval()
 self.tn = self.tp + delay
 if self.tn <= self.tc:
 size = self.sendRTCP()
 self.avgrtcpsize = (1/16.)*size + (15/16.)*self.avgrtcpsize
 self.tp = self.tc
 delay = self.rtcpinterval()
 self.initial = False
 else:
 delay = self.tn - self.tc
 self.pmembers = len(self.members)
 self.timer.start(delay*1000) # restart the timer

The sendBYE method is invoked by periodic timedout callback to send the BYE packet along with other
reports.

 def sendBYE(self, reason=''):
 if self.rtpsent and self.rtcpsent:
 sendRTCP(True)

The sendRTCP method sends a compound RTCP packet containing various optional reports. The optional
argument allows sending the BYE packet. The method returns the number of bytes of the compound packet
sent. After constructing the various individual packets in the compound packet, it invokes a callback on the
application to actually send the RTCP packet.

 def sendRTCP(self, sendbye=False):
 reports = []
 toremove = []
 for member in self.members.values():
 if member.received > 0:
 ntp1, ntp2 = time2ntp(member.lastntp)
 lsr = ((ntp1 & 0x0ffff) << 16) | ((ntp2 >> 16) & 0x0ffff)
 dlsr = int((self.tc - member.lastntp)*65536)
 member.updatelostandexpected()
 report = RTCP.packet(ssrc=member.ssrc, flost=member.fraction, clost=member.lost, \
 hseq=member.cycles+member.maxseq, jitter=int(member.jitter), lsr=lsr, dlsr=dlsr)
 reports.append(report)
 member.received = 0
 if member.timeout == 5: # if no packet within five RTCP intervals
 toremove.append(member.ssrc) # schedule it to be removed
 else:
 member.timeout = member.timeout + 1
 if toremove: # remove all timedout members
 for ssrc in toremove: del self.members[ssrc]

 packet = RTCP()
 if self.wesent: # add a sender report
 p = RTCP.packet(pt=RTCP.SR, ntp=self.tc, ts=self.tsnow+self.ts0, pktcount=self.member.pktcount, \
 octcount=self.member.octcount, reports=reports[:32])

- 130 -

 self.wesent = False
 else:
 p = RTCP.packet(pt=RTCP.RR, reports=reports[:32])
 packet.append(p)

 if len(reports)>=32: # add additional RR if needed
 reports = reports[32:]
 while reports:
 p, reports = RTCP.packet(pt=RTCP.RR, reports=reports[:32]), reports[32:]
 packet.append(p)

 p = RTCP.packet(pt=RTCP.SDES, items=self.member.items)
 # add SDES. Should add items only every few packets, except for CNAME which is added in every.
 packet.append(p)

 if sendbye: # add a BYE packet as well
 p = RTCP.packet(pt=RTCP.BYE, ssrcs=[self.member.ssrc]) # Need to add a reason as well
 packet.append(p)

 data = str(packet) # format for network data
 self.app.sendRTCP(data) # invoke app to send the packet
 self.rtcpsent = True
 return len(data)

So far we have described the various functions as per the specification to handle RTP and RTCP. However,
the actual transport of the packets was delegated to the application. In a real implementation the application
will use another object to represent the network transport for the session. The application will then use this
network transport to send and receive any RTP and RTCP packet for that session.

We implement an example Network class next.

Network

The network interface is tied to a single session. This is a simple network interface that allocates two
consecutive UDP ports for RTP and RTCP. The useful properties of the Network class are src and dest,
which are the host-port tuple representing the source and destination addresses. These addresses define the
session, as they are the receiving transport addresses for the session. By default it uses some random
consecutive port number within the specified range as mentioned below.

The default behavior is to use the RTCP port number as one more than the RTP port number. However,
certain applications such as SIP-based telephony between users behind network address translators may
change the port numbers to some arbitrary port numbers. Thus to facilitate this, we define two additional
properties, srcRTCP and destRTCP, which explicitly allow setting the RTCP ports different from the
default. Once the object is created, the src and dest properties cannot be changed.

The constructor can take several optional named arguments that control the behavior. The argument src is
the host-port tuple for listening address. The host part should be set to “0.0.0.0” indicating any local interface.
If the port is specified in this tuple then it is used for RTP listening port. If the argument is missing or the port
is 0, then it allocates any even port in a pre-defined range of port numbers. The srcRTCP property can also
be specified as a host-port tuple indicating a different port number than the default value of one more than the
RTP port number. The dest and destRTCP optional arguments are used to specify the destination address

IMPLEMENTING SIP TELEPHONY

- 131 -

to send RTP and RTCP packets to. The argument supplied in the sendRTP or sendRTCP method overrides
the property supplied in the constructor for individual sending.

The maxsize property controls the maximum packet size that can be sent on this network object. The app
property refers to the application instance on which receivedRTP and receivedRTCP callbacks are
invoked when some data is available on RTP and RTCP sockets, respectively.

If the src is not specified then it picks a random consecutive port number pair in the range 10000-65535,
such that the RTP port is an even number and the RTCP port is the next odd number. The default range can
be changed using the low and high named arguments. The condition that the RTP port should be an even
number can also be relaxed by setting the even named argument to False. The number of retries for
allocating the port pair defaults to 20. This can be set using the retry named argument.

class Network(object):
 def __init__(self, app, **kwargs):
 self.app = app
 self.src = kwargs.get('src', ('0.0.0.0', 0))
 self.dest = kwargs.get('dest', None)
 self.srcRTCP= kwargs.get('srcRTCP', (self.src[0], self.src[1] and self.src[1]+1 or 0))
 self.destRTCP=kwargs.get('destRTCP', None)
 self.maxsize = kwargs.get('maxsize', 1500)

The most important step in constructing the Network object is to allocate the two UDP ports and associated
bound sockets listening on those ports. If the src argument has a valid port number, then it is used for
binding the two sockets. The second socket’s port is one more than what is specified in src.

 if self.src[1] != 0: # specified port
 try:
 s1 = socket.socket(type=socket.SOCK_DGRAM)
 s2 = socket.socket(type=socket.SOCK_DGRAM)
 s1.bind(self.src)
 s2.bind((self.srcRTCP)
 except:
 s1.close(); s2.close();
 s1 = s2 = None

If no valid port is supplied in the src argument, then it tries to allocate two random consecutive ports in the
range 10000-65535. The range, the number of retries, and whether to care for even number for RTP port –
these parameters can be controlled by the named arguments supplied in the constructor.

 else:
 retry = kwargs.get('retry', 20) # number of retries to do
 low = kwargs.get('low', 10000) # the range low-high for picking port number
 high = kwargs.get('high', 65535)
 even = kwargs.get('even', True) # means by default use even port for RTP
 while retry>0:
 s1 = socket.socket(type=socket.SOCK_DGRAM)
 s2 = socket.socket(type=socket.SOCK_DGRAM)
 # don't bind to any (0) to avoid collision in RTCP, where some OS will allocate same port for RTP for retries

- 132 -

 if even:
 port = random.randint(low, high) & 0x0fffe # should not use high+1?
 else:
 port = random.randint(low, high) | 0x00001
 try:
 s1.bind((self.src[0], port))
 s2.bind((self.src[1], port+1))
 self.src, self.srcRTCP = s1.getsockname(), s2.getsockname()
 except:
 s1.close(); s2.close();
 s1 = s2 = None
 retry = retry - 1

Once the sockets are created and bound, we store the sockets and schedule the listening tasks for those
sockets.

 if s1 and s2:
 self.rtp, self.rtcp = s1, s2
 multitask.add(self.receiveRTP(s1))
 multitask.add(self.receiveRTCP(s2))
 else:
 raise ValueError, 'cannot allocate sockets'

Destroying the Network object involves closing the listening sockets.

 def __del__(self):
 if self.rtp: self.rtp.close(); self.rtp = None
 if self.rtcp: self.rtcp.close(); self.rtcp = None
 if self.app: self.app = None

The listening tasks receive packets in the listening sockets and transfer them to the application by invoking
the app.receivedRTP or app.receivedRTCP callback methods as needed.

 def receiveRTP(self, sock):
 try:
 while True:
 data, remote = yield multitask.recvfrom(sock, self.maxsize)
 if self.app: self.app.receivedRTP(data, remote, self.src)
 except: pass

 def receiveRTCP(self, sock):
 try:
 while True:
 data, remote = yield multitask.recvfrom(sock, self.maxsize)
 if self.app: self.app.receivedRTCP(data, remote, self.src)
 except: pass

IMPLEMENTING SIP TELEPHONY

- 133 -

When the application wants to send some packet on RTP or RTCP socket, it invokes the sendRTP or
sendRTCP method, respectively.

 def sendRTP(self, data, dest=None):
 if self.rtp:
 yield multitask.sendto(self.rtp, data, dest or self.dest)

 def sendRTCP(self, data, dest=None):
 if self.rtcp:
 yield multitask.sendto(self.rtcp, data, dest or self.dest)

The simple network interface implemented in this section is good enough for a simple client implementation
that can communicate with remote over UDP. In later chapters we will extend this to support traversal
through network address translators and firewalls.

RTP profile for audio and video

When RTP session is advertised in SDP message body passed in SIP INVITE or 200 OK response, the SDP
specifies a particular profile to be used. The “RTP/AVP” profile as defined in RFC 3551 provides guidelines
on the use of RTP and RTCP for various audio and video codecs. In particular, it defines static payload types
for some existing and known audio and video codecs.

For the purpose of this implementation, we implement a module named rfc3551, which lists the pre-
defined codecs as per RFC3551. This is a very simple module that contains two exported methods: type
and desc, for converting a text description of a codec to the static payload type number and vice-versa,
respectively.

For example, the specification defines payload type of 3 for narrowband GSM audio codec operating at 8000
Hz. Thus, you can test the two functions as follows.

>>> print type('GSM/8000')
3
>>> print desc(3)
('GSM', 8000, 1, 3, 'GSM/8000')

To get a list of all the static payload type definitions in this module, you can do the following.

>>> for x in range(0, len(_types)):
... name, rate, count, pt, d = desc(x)
... assert(pt == x)

- 134 -

... if d: assert(x == type(d))

... if d: print '%d=>%s'%(pt, d),
0=>PCMU/8000 3=>GSM/8000 4=>G723/8000 5=>DVI4/8000 6=>DVI4/16000 7=>LPC/8000 8=>PCMA/8000
9=>G722/8000 10=>L16/44100/2 11=>L16/44100 12=>QCELP/8000 13=>CN/8000 14=>MPA/90000 15=>G728/8000
16=>DVI4/11025 17=>DVI4/22050 18=>G729/8000 25=>CelB/90000 26=>JPEG/90000 28=>nv/90000
31=>H261/90000 32=>MPV/90000 33=>MP2T/90000 34=>H263/90000

In the implementation, we initialize a list _types, that contains a list of all the payload type descriptions up
to a maximum value of static payload type.

static types: arranged in rows 0-5, 6-10, 11-15, ...
_types = ["PCMU/8000/1", None, None, "GSM/8000/1", "G723/8000/1", "DVI4/8000/1", \
 "DVI4/16000/1", "LPC/8000/1", "PCMA/8000/1", "G722/8000/1", "L16/44100/2", \
 "L16/44100/1", "QCELP/8000/1", "CN/8000/1", "MPA/90000/1", "G728/8000/1", \
 "DVI4/11025/1", "DVI4/22050/1", "G729/8000/1", None, None, \
 None, None, None, None, "CelB/90000/1", \
 "JPEG/90000/1", None, "nv/90000/1", None, None, \
 "H261/90000/1", "MPV/90000/1", "MP2T/90000/1", "H263/90000/1"]

Then we define an internal method _type2desc, that takes the payload type number, extracts the
description string, and extracts the four components of the description string in a tuple: (1) the name, (2)
sampling rate, (3) channel count, and (4) description text.

def _type2desc(t):
 if _types[t]:
 name, srate, scount = _types[t].split('/')
 return (name, int(srate), int(scount), t, name + '/' + srate + ('' if scount == '1' else '/' + scount))
 else:
 return (None, None, None, t, None)

Then we construct another list, _desc, of all the descriptions tuple. We also create a list, _lowers, similar
to _types but with all lower case entries, so that we can compare and index using this. Note that the
description is case insensitive.

_desc = map(_type2desc, range(0, len(_types)))
_lowers = [(x and x.lower() or None) for x in _types]

Then we define our interface method, type, which takes the description string and returns the payload type
number or -1 if the payload type is not found in the table. The description string is of the form “name/rate” or
“name/rate/count”.

type = lambda x: _lowers.index(x.lower()) if x and (x.lower() in _lowers) \
 else ((_lowers.index(x.lower()+'/1') if x and ((x.lower()+'/1') in _lowers) else -1))

We also define the desc method that takes the payload type number and returns a tuple of (name, rate,
count, pt, text) where name is the codec name string, rate is the sampling rate number, count is the

IMPLEMENTING SIP TELEPHONY

- 135 -

channel count number, pt is the payload type number and text is the description text string. If the payload
type is not found in the table, it still returns the tuple where all except pt are None.

desc = lambda x: _desc[x] if x >=0 and x < len(_desc) else (None, None, None, x, None)

Touch-tone interface
Implementing DTMF transport as per RFC 2833 and RFC 2198

There are several ways to transfer key-pad input in an Internet audio call. At the high level the information
can be sent over the signaling or the media path. Sending the key-pad input over the signaling path is usually
discouraged. There are two ways to transport the information in the media path – either it can remain in the
audio payload or can be detected and sent as special payload data. The problem with the first approach is that
it loses quality because of the codecs. Hence we will implement only the second approach.

RFC2833 defines the payload format for the DTMF tone to be carried in an RTP session. RFC 2198 defines
the redundant data format needed for using RFC2833-based transport of DTMF tones. We implement some
of the functions from these specifications in our modules rfc2833 and rfc2198, respectively.

RTP payload for DTMF digits

The payload format is a simple binary protocol packet that stores the digit number as shown below.

Let’s define the DTMF class to represent the payload. The object exposes various properties such as E, R,
volume, duration and key as defined in the specification. The key argument specifies the actual key-
pad input. There are two ways to create a DTMF object – by providing these individual properties as named
parameters or by supplying the value argument that contains the received payload to parse.

>>> key1 = DTMF(key=7)
>>> key2 = DTMF(value=str(key1))

The parsing is done by the constructor and the formatting using the string context. We need to use the
struct module to parse and format the binary protocol.

import struct

class DTMF(object):
 def __init__(self, value=None, **kwargs):
 if not value:
 self.event = self.mapkey(kwargs.get('key', None))
 self.E = kwargs.get('end', False)
 self.R = False # reserved bit
 self.volume = kwargs.get('volume', 0)
 self.duration=kwargs.get('duration', 200)
 else:
 self.event, second, self.duration = struct.unpack('!BBH', value)
 self.E, self.R = (second & 0x80 != 0), False # ignore the reserved bit

IMPLEMENTING SIP TELEPHONY

- 137 -

 self.volume = second & 0x3f

 def __repr__(self):
 return struct.pack('!BBH', self.event, (self.E and 0x80 or 0x00) | (self.volume & 0x3f), self.duration)

The internal method to map the key number to the corresponding string representing the key is shown below.

 @staticmethod
 def mapkey(key):
 '''Convert a key to an event.'''
 if not key or len(key)!= 1: return 16 # either empty or not one char
 index = '0123456789*#ABCD'.find(key)
 if index>= 0: return index
 else: return 16

The createDTMF method is the main module function that takes a string containing sequence of DTMF
digits, and returns a list of the payload DTMF objects representing those digits. The application is responsible
for using the returned value and sending them in an RTP session by invoking session.send method of a
Session object as described in the previous chapter.

def createDTMFs(keys):
 result = map(lambda x: DTMF(key=x), keys)
 if result: result[-1].E = True # last one has E set to True
 return result

RTP payload for redundant audio data

Copyright (c) 2007, Kundan Singh. All rights reserved. See LICENSING for details.
@implements RFC2198 (Redundant RTP payload)

'''
Implements RTP payload for redundant audio data as per RFC 2198.
'''

import struct

def createRedundant(packets):
 '''Create redundant payload using the individual RTP packets. The packets arg is assumed
 to be a list of tuples (pt, timestamp, payload). The first packet is assumed to be
 primary, and is put the last. All other packets are put in the same order'''
 hdr, data = '', ''

- 138 -

 for p in packets[1:]:
 hdr += struct.pack('!BHB', 0x80 | p[0], p[1] - packets[0][1], len(p[2]))
 data += p[2]
 if packets:
 hdr += struct.pack('!BHB', packets[0][0], packets[0][1], len(packets[0][2]))
 data += packets[0][2]
 return hdr + data

def parseRedundant(packet, ts):
 '''Parse a redundant payload and return the individual payloads. The first in the result
 is the primary payload. Each payload is tuple (pt, timestamp, payload). The ts of the
 original RTP packet should be supplied as well.'''
 all = []
 while packet:
 pt, = struct.unpack('!B', packet[:1])
 packet = packet[1:]
 if pt & 0x80:
 all.insert(0, (pt))
 else:
 tsoffset, len = struct.unpack('!HB', packet[:3])
 packet = packet[3:]
 all.append((pt & 0x7f, tsoffset, len))
 result = []
 for a in all[1:]: # for all secondary data
 data = (a[0], ts+a[1], packet[:a[2]])
 packet = packet[a[2]:]
 result.append(data)
 if all:
 result.insert(0, (all[0][0], ts, packet)) # put remaining data as primary
 return result

